Sort by:
Page 19 of 3113104 results

Data-driven cognitive subtypes in major depressive disorder: Gray matter atrophy in the left fusiform gyrus and cerebellum.

Tao Y, Yan Y, Wang M, Fan H, Dou Y, Zhao L, Ni R, Wei J, Yang X, Ma X

pubmed logopapersAug 14 2025
This study aims to apply a semi-supervised machine learning approach for classifying major depressive disorder (MDD) patients into more homogeneous cognitive subtypes based on multidimensional cognitive profiles, and to perform multimodal neuroimaging to identify subtype-specific neural signatures. A total of 147 MDD patients and 222 healthy controls (HCs) completed the Cambridge Neuropsychological Test Automated Battery (CANTAB) and magnetic resonance imaging (MRI) scans. Cognitive subtypes were derived based on neurocognitive profiles using heterogeneity through discriminative analysis (HYDRA). General linear models (GLMs) were employed to assess differences across groups in neurocognitive indexes and neuroimaging data followed by Tukey's post-hoc test for pairwise comparisons between the groups. Based on cognitive profiles, MDD patients were classified into cognitive deficit (CD, N = 75) and cognitive preservation (CP, N = 72) subtypes. Voxel-based morphometry (VBM) revealed reduced grey matter volume (GMV) in the left fusiform gyrus and left cerebellum in MDD patients when compared to HCs, with CD patients showing greater atrophy than patients in CP subtype. Meanwhile, the amplitude of low-frequency fluctuations (ALFF) in the temporal lobe of both MDD subtypes was decreased when compared to that of HCs, showing no inter-subtype differences. A subtype of MDD characterized by comprehensive cognitive deficits is associated with structural atrophy in the left fusiform gyrus and cerebellum, suggesting these regions as potential biomarkers for the cognitive deficit subtype of MDD. However, no significant differences in ALFF were observed between the two cognitive subgroups.

Restorative artificial intelligence-driven implant dentistry for immediate implant placement with an interim crown: A clinical report.

Marques VR, Soh D, Cerqueira G, Orgev A

pubmed logopapersAug 14 2025
Immediate implant placement into the extraction socket based on a restoratively driven approach poses challenges which might compromise the delivery of an immediate interim restoration on the day of surgery. The fabricated digital design of the interim restoration may require modification before delivery and may not maintain the planned form to support the gingival architecture for the future prosthetic volume for the emergence profile. This report demonstrates how to utilize the artificial intelligence (AI)-assisted segmentation of bone and tooth to enhance restoratively driven planning for immediate implant placement with an immediate interim restoration. A fractured maxillary central incisor was extracted after cone beam computed tomography (CBCT) analysis. AI-assisted segmentation from the digital imaging and communications in medicine (DICOM) file was used to separate the tooth segmentation and alveolar bone for the digital implant planning and AI-assisted design of the interim restoration copied from the natural tooth contour, optimizing the emergence profile. Immediate implant placement was completed after minimally traumatic extraction, and the AI-assisted interim restoration was delivered immediately. The AI-assisted workflow enabled predictable implant positioning based on restorative needs, reducing surgical time and optimizing delivery of the interim restoration for improved clinical outcomes. The emergence profile of the anatomic crown copied from the AI-workflow for the interim restoration guided soft tissue healing effectively.

Exploring the potential of generative artificial intelligence in medical image synthesis: opportunities, challenges, and future directions.

Khosravi B, Purkayastha S, Erickson BJ, Trivedi HM, Gichoya JW

pubmed logopapersAug 14 2025
Generative artificial intelligence has emerged as a transformative force in medical imaging since 2022, enabling the creation of derivative synthetic datasets that closely resemble real-world data. This Viewpoint examines key aspects of synthetic data, focusing on its advancements, applications, and challenges in medical imaging. Various generative artificial intelligence image generation paradigms, such as physics-informed and statistical models, and their potential to augment and diversify medical research resources are explored. The promises of synthetic datasets, including increased diversity, privacy preservation, and multifunctionality, are also discussed, along with their ability to model complex biological phenomena. Next, specific applications using synthetic data such as enhancing medical education, augmenting rare disease datasets, improving radiology workflows, and enabling privacy-preserving multicentre collaborations are highlighted. The challenges and ethical considerations surrounding generative artificial intelligence, including patient privacy, data copying, and potential biases that could impede clinical translation, are also addressed. Finally, future directions for research and development in this rapidly evolving field are outlined, emphasising the need for robust evaluation frameworks and responsible utilisation of generative artificial intelligence in medical imaging.

Ultrasound Phase Aberrated Point Spread Function Estimation with Convolutional Neural Network: Simulation Study.

Shen WH, Lin YA, Li ML

pubmed logopapersAug 13 2025
Ultrasound imaging systems rely on accurate point spread function (PSF) estimation to support advanced image quality enhancement techniques such as deconvolution and speckle reduction. Phase aberration, caused by sound speed inhomogeneity within biological tissue, is inevitable in ultrasound imaging. It distorts the PSF by increasing sidelobe level and introducing asymmetric amplitude, making PSF estimation under phase aberration highly challenging. In this work, we propose a deep learning framework for estimating phase-aberrated PSFs using U-Net and complex U-Net architectures, operating on RF and complex k-space data, respectively, with the latter demonstrating superior performance. Synthetic phase aberration data, generated using the near-field phase screen model, is employed to train the networks. We evaluate various loss functions and find that log-compressed B-mode perceptual loss achieves the best performance, accurately predicting both the mainlobe and near sidelobe regions of the PSF. Simulation results validate the effectiveness of our approach in estimating PSFs under varying levels of phase aberration. Furthermore, we demonstrate that more accurate PSF estimation improves performance in a downstream phase aberration correction task, highlighting the broader utility of the proposed method.

Exploring Radiologists' Use of AI Chatbots for Assistance in Image Interpretation: Patterns of Use and Trust Evaluation.

Alarifi M

pubmed logopapersAug 13 2025
This study investigated radiologists' perceptions of AI-generated, patient-friendly radiology reports across three modalities: MRI, CT, and mammogram/ultrasound. The evaluation focused on report correctness, completeness, terminology complexity, and emotional impact. Seventy-nine radiologists from four major Saudi Arabian hospitals assessed AI-simplified versions of clinical radiology reports. Each participant reviewed one report from each modality and completed a structured questionnaire covering factual correctness, completeness, terminology complexity, and emotional impact. A structured and detailed prompt was used to guide ChatGPT-4 in generating the reports, which included clear findings, a lay summary, glossary, and clarification of ambiguous elements. Statistical analyses included descriptive summaries, Friedman tests, and Pearson correlations. Radiologists rated mammogram reports highest for correctness (M = 4.22), followed by CT (4.05) and MRI (3.95). Completeness scores followed a similar trend. Statistically significant differences were found in correctness (χ<sup>2</sup>(2) = 17.37, p < 0.001) and completeness (χ<sup>2</sup>(2) = 13.13, p = 0.001). Anxiety and complexity ratings were moderate, with MRI reports linked to slightly higher concern. A weak positive correlation emerged between radiologists' experience and mammogram correctness ratings (r = .235, p = .037). Radiologists expressed overall support for AI-generated simplified radiology reports when created using a structured prompt that includes summaries, glossaries, and clarification of ambiguous findings. While mammography and CT reports were rated favorably, MRI reports showed higher emotional impact, highlighting a need for clearer and more emotionally supportive language.

Economic Evaluations and Equity in the Use of Artificial Intelligence in Imaging Examinations for Medical Diagnosis in People With Dermatological, Neurological, and Pulmonary Diseases: Systematic Review.

Santana GO, Couto RM, Loureiro RM, Furriel BCRS, de Paula LGN, Rother ET, de Paiva JPQ, Correia LR

pubmed logopapersAug 13 2025
Health care systems around the world face numerous challenges. Recent advances in artificial intelligence (AI) have offered promising solutions, particularly in diagnostic imaging. This systematic review focused on evaluating the economic feasibility of AI in real-world diagnostic imaging scenarios, specifically for dermatological, neurological, and pulmonary diseases. The central question was whether the use of AI in these diagnostic assessments improves economic outcomes and promotes equity in health care systems. This systematic review has 2 main components, economic evaluation and equity assessment. We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) tool to ensure adherence to best practices in systematic reviews. The protocol was registered with PROSPERO (International Prospective Register of Systematic Reviews), and we followed the PRISMA-E (Preferred Reporting Items for Systematic Reviews and Meta-Analyses - Equity Extension) guidelines for equity. Scientific articles reporting on economic evaluations or equity considerations related to the use of AI-based tools in diagnostic imaging in dermatology, neurology, or pulmonology were included in the study. The search was conducted in the PubMed, Embase, Scopus, and Web of Science databases. Methodological quality was assessed using the following checklists, CHEC (Consensus on Health Economic Criteria) for economic evaluations, EPHPP (Effective Public Health Practice Project) for equity evaluation studies, and Welte for transferability. The systematic review identified 9 publications within the scope of the research question, with sample sizes ranging from 122 to over 1.3 million participants. The majority of studies addressed economic evaluation (88.9%), with most studies addressing pulmonary diseases (n=6; 66.6%), followed by neurological diseases (n=2; 22.3%), and only 1 (11.1%) study addressing dermatological diseases. These studies had an average quality access of 87.5% on the CHEC checklist. Only 2 studies were found to be transferable to Brazil and other countries with a similar health context. The economic evaluation revealed that 87.5% of studies highlighted the benefits of using AI in dermatology, neurology, and pulmonology, highlighting significant cost-effectiveness outcomes, with the most advantageous being a negative cost-effectiveness ratio of -US $27,580 per QALY (quality-adjusted life year) for melanoma diagnosis, indicating substantial cost savings in this scenario. The only study assessing equity, based on 129,819 radiographic images, identified AI-assisted underdiagnosis, particularly in certain subgroups defined by gender, ethnicity, and socioeconomic status. This review underscores the importance of transparency in the description of AI tools and the representativeness of population subgroups to mitigate health disparities. As AI is rapidly being integrated into health care, detailed assessments are essential to ensure that benefits reach all patients, regardless of sociodemographic factors.

Pathology-Guided AI System for Accurate Segmentation and Diagnosis of Cervical Spondylosis.

Zhang Q, Chen X, He Z, Wu L, Wang K, Sun J, Shen H

pubmed logopapersAug 13 2025
Cervical spondylosis, a complex and prevalent condition, demands precise and efficient diagnostic techniques for accurate assessment. While MRI offers detailed visualization of cervical spine anatomy, manual interpretation remains labor-intensive and prone to error. To address this, we developed an innovative AI-assisted Expert-based Diagnosis System that automates both segmentation and diagnosis of cervical spondylosis using MRI. Leveraging multi-center datasets of cervical MRI images from patients with cervical spondylosis, our system features a pathology-guided segmentation model capable of accurately segmenting key cervical anatomical structures. The segmentation is followed by an expert-based diagnostic framework that automates the calculation of critical clinical indicators. Our segmentation model achieved an impressive average Dice coefficient exceeding 0.90 across four cervical spinal anatomies and demonstrated enhanced accuracy in herniation areas. Diagnostic evaluation further showcased the system's precision, with the lowest mean average errors (MAE) for the C2-C7 Cobb angle and the Maximum Spinal Cord Compression (MSCC) coefficient. In addition, our method delivered high accuracy, precision, recall, and F1 scores in herniation localization, K-line status assessment, T2 hyperintensity detection, and Kang grading. Comparative analysis and external validation demonstrate that our system outperforms existing methods, establishing a new benchmark for segmentation and diagnostic tasks for cervical spondylosis.

CT-Based radiomics and deep learning for the preoperative prediction of peritoneal metastasis in ovarian cancers.

Liu Y, Yin H, Li J, Wang Z, Wang W, Cui S

pubmed logopapersAug 13 2025
To develop a CT-based deep learning radiomics nomogram (DLRN) for the preoperative prediction of peritoneal metastasis (PM) in patients with ovarian cancer (OC). A total of 296 patients with OCs were randomly divided into training dataset (N = 207) and test dataset (N = 89). The radiomics features and DL features were extracted from CT images of each patient. Specifically, radiomics features were extracted from the 3D tumor regions, while DL features were extracted from the 2D slice with the largest tumor region of interest (ROI). The least absolute shrinkage and selection operator (LASSO) algorithm was used to select radiomics and DL features, and the radiomics score (Radscore) and DL score (Deepscore) were calculated. Multivariate logistic regression was employed to construct clinical model. The important clinical factors, radiomics and DL features were integrated to build the DLRN. The predictive performance of the models was evaluated using the area under the receiver operating characteristic curve (AUC) and DeLong's test. Nine radiomics features and 10 DL features were selected. Carbohydrate antigen 125 (CA-125) was the independent clinical predictor. In the training dataset, the AUC values of the clinical, radiomics and DL models were 0.618, 0.842, and 0.860, respectively. In the test dataset, the AUC values of these models were 0.591, 0.819 and 0.917, respectively. The DLRN showed better performance than other models in both training and test datasets with AUCs of 0.943 and 0.951, respectively. Decision curve analysis and calibration curve showed that the DLRN provided relatively high clinical benefit in both the training and test datasets. The DLRN demonstrated superior performance in predicting preoperative PM in patients with OC. This model offers a highly accurate and noninvasive tool for preoperative prediction, with substantial clinical potential to provide critical information for individualized treatment planning, thereby enabling more precise and effective management of OC patients.

Explanation and Elaboration with Examples for METRICS (METRICS-E3): an initiative from the EuSoMII Radiomics Auditing Group.

Kocak B, Ammirabile A, Ambrosini I, Akinci D'Antonoli T, Borgheresi A, Cavallo AU, Cannella R, D'Anna G, Díaz O, Doniselli FM, Fanni SC, Ghezzo S, Groot Lipman KBW, Klontzas ME, Ponsiglione A, Stanzione A, Triantafyllou M, Vernuccio F, Cuocolo R

pubmed logopapersAug 13 2025
Radiomics research has been hindered by inconsistent and often poor methodological quality, limiting its potential for clinical translation. To address this challenge, the METhodological RadiomICs Score (METRICS) was recently introduced as a tool for systematically assessing study rigor. However, its effective application requires clearer guidance. The METRICS-E3 (Explanation and Elaboration with Examples) resource was developed by the European Society of Medical Imaging Informatics-Radiomics Auditing Group in response. This international initiative provides comprehensive support for users by offering detailed rationales, interpretive guidance, scoring recommendations, and illustrative examples for each METRICS item and condition. Each criterion includes positive examples from peer-reviewed, open-access studies and hypothetical negative examples. In total, the finalized METRICS-E3 includes over 200 examples. The complete resource is publicly available through an interactive website. CRITICAL RELEVANCE STATEMENT: METRICS-E3 offers deeper insights into each METRICS item and condition, providing concrete examples with accompanying commentary and recommendations to enhance the evaluation of methodological quality in radiomics research. KEY POINTS: As a complementary initiative to METRICS, METRICS-E3 is intended to support stakeholders in evaluating the methodological aspects of radiomics studies. In METRICS-E3, each METRICS item and condition is supplemented with interpretive guidance, positive literature-based examples, hypothetical negative examples, and scoring recommendations. The complete METRICS-E3 explanation and elaboration resource is accessible at its interactive website.

MammosighTR: Nationwide Breast Cancer Screening Mammogram Dataset with BI-RADS Annotations for Artificial Intelligence Applications.

Koç U, Beşler MS, Sezer EA, Karakaş E, Özkaya YA, Evrimler Ş, Yalçın A, Kızıloğlu A, Kesimal U, Oruç M, Çankaya İ, Koç Keleş D, Merd N, Özkan E, Çevik Nİ, Gökhan MB, Boyraz Hayat B, Özer M, Tokur O, Işık F, Tezcan A, Battal F, Yüzkat M, Sebik NB, Karademir F, Topuz Y, Sezer Ö, Varlı S, Ülgü MM, Akdoğan E, Birinci Ş

pubmed logopapersAug 13 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content</i>. The MammosighTR dataset, derived from Türkiye's national breast cancer screening mammography program, provides BI-RADS-labeled mammograms with detailed annotations on breast composition and lesion quadrant location, which may be useful for developing and testing AI models in breast cancer detection. ©RSNA, 2025.
Page 19 of 3113104 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.