Sort by:
Page 179 of 2052045 results

Characterizing ASD Subtypes Using Morphological Features from sMRI with Unsupervised Learning.

Raj A, Ratnaik R, Sengar SS, Fredo ARJ

pubmed logopapersMay 15 2025
In this study, we attempted to identify the subtypes of autism spectrum disorder (ASD) with the help of anatomical alterations found in structural magnetic resonance imaging (sMRI) data of the ASD brain and machine learning tools. Initially, the sMRI data was preprocessed using the FreeSurfer toolbox. Further, the brain regions were segmented into 148 regions of interest using the Destrieux atlas. Features such as volume, thickness, surface area, and mean curvature were extracted for each brain region. We performed principal component analysis independently on the volume, thickness, surface area, and mean curvature features and identified the top 10 features. Further, we applied k-means clustering on these top 10 features and validated the number of clusters using Elbow and Silhouette method. Our study identified two clusters in the dataset which significantly shows the existence of two subtypes in ASD. We identified the features such as volume of scaled lh_G_front middle, thickness of scaled rh_S_temporal transverse, area of scaled lh_S_temporal sup, and mean curvature of scaled lh_G_precentral as the significant features discriminating the two clusters with statistically significant p-value (p<0.05). Thus, our proposed method is effective for the identification of ASD subtypes and can also be useful for the screening of other similar neurological disorders.

Energy-Efficient AI for Medical Diagnostics: Performance and Sustainability Analysis of ResNet and MobileNet.

Rehman ZU, Hassan U, Islam SU, Gallos P, Boudjadar J

pubmed logopapersMay 15 2025
Artificial intelligence (AI) has transformed medical diagnostics by enhancing the accuracy of disease detection, particularly through deep learning models to analyze medical imaging data. However, the energy demands of training these models, such as ResNet and MobileNet, are substantial and often overlooked; however, researchers mainly focus on improving model accuracy. This study compares the energy use of these two models for classifying thoracic diseases using the well-known CheXpert dataset. We calculate power and energy consumption during training using the EnergyEfficientAI library. Results demonstrate that MobileNet outperforms ResNet by consuming less power and completing training faster, resulting in lower overall energy costs. This study highlights the importance of prioritizing energy efficiency in AI model development, promoting sustainable, eco-friendly approaches to advance medical diagnosis.

Does Whole Brain Radiomics on Multimodal Neuroimaging Make Sense in Neuro-Oncology? A Proof of Concept Study.

Danilov G, Kalaeva D, Vikhrova N, Shugay S, Telysheva E, Goraynov S, Kosyrkova A, Pavlova G, Pronin I, Usachev D

pubmed logopapersMay 15 2025
Employing a whole-brain (WB) mask as a region of interest for extracting radiomic features is a feasible, albeit less common, approach in neuro-oncology research. This study aims to evaluate the relationship between WB radiomic features, derived from various neuroimaging modalities in patients with gliomas, and some key baseline characteristics of patients and tumors such as sex, histological tumor type, WHO Grade (2021), IDH1 mutation status, necrosis lesions, contrast enhancement, T/N peak value and metabolic tumor volume. Forty-one patients (average age 50 ± 15 years, 21 females and 20 males) with supratentorial glial tumors were enrolled in this study. A total of 38,720 radiomic features were extracted. Cluster analysis revealed that whole-brain images of biologically different tumors could be distinguished to a certain extent based on their imaging biomarkers. Machine learning capabilities to detect image properties like contrast-enhanced or necrotic zones validated radiomic features in objectifying image semantics. Furthermore, the predictive capability of imaging biomarkers in determining tumor histology, grade and mutation type underscores their diagnostic potential. Whole-brain radiomics using multimodal neuroimaging data appeared to be informative in neuro-oncology, making research in this area well justified.

Participatory Co-Creation of an AI-Supported Patient Information System: A Multi-Method Qualitative Study.

Heizmann C, Gleim P, Kellmeyer P

pubmed logopapersMay 15 2025
In radiology and other medical fields, informed consent often rely on paper-based forms, which can overwhelm patients with complex terminology. These forms are also resource-intensive. The KIPA project addresses these challenges by developing an AI-assisted patient information system to streamline the consent process, improve patient understanding, and reduce healthcare workload. The KIPA system uses natural language processing (NLP) to provide real-time, accessible explanations, answer questions, and support informed consent. KIPA follows an 'ethics-by-design' approach, integrating user feedback to align with patient and clinician needs. Interviews and usability testing identified requirements, such as simplified language and support for varying digital literacy. The study presented here explores the participatory co-creation of the KIPA system, focusing on improving informed consent in radiology through a multi-method qualitative approach. Preliminary results suggest that KIPA improves patient engagement and reduces insecurities by providing proactive guidance and tailored information. Future work will extend testing to other stakeholders and assess the impact of the system on clinical workflow.

A Deep-Learning Framework for Ovarian Cancer Subtype Classification Using Whole Slide Images.

Wang C, Yi Q, Aflakian A, Ye J, Arvanitis T, Dearn KD, Hajiyavand A

pubmed logopapersMay 15 2025
Ovarian cancer, a leading cause of cancer-related deaths among women, comprises distinct subtypes each requiring different treatment approaches. This paper presents a deep-learning framework for classifying ovarian cancer subtypes using Whole Slide Imaging (WSI). Our method contains three stages: image tiling, feature extraction, and multi-instance learning. Our approach is trained and validated on a public dataset from 80 distinct patients, achieving up to 89,8% accuracy with a notable improvement in computational efficiency. The results demonstrate the potential of our framework to augment diagnostic precision in clinical settings, offering a scalable solution for the accurate classification of ovarian cancer subtypes.

Leveraging Vision Transformers in Multimodal Models for Retinal OCT Analysis.

Feretzakis G, Karakosta C, Gkoulalas-Divanis A, Bisoukis A, Boufeas IZ, Bazakidou E, Sakagianni A, Kalles D, Verykios VS

pubmed logopapersMay 15 2025
Optical Coherence Tomography (OCT) has become an indispensable imaging modality in ophthalmology, providing high-resolution cross-sectional images of the retina. Accurate classification of OCT images is crucial for diagnosing retinal diseases such as Age-related Macular Degeneration (AMD) and Diabetic Macular Edema (DME). This study explores the efficacy of various deep learning models, including convolutional neural networks (CNNs) and Vision Transformers (ViTs), in classifying OCT images. We also investigate the impact of integrating metadata (patient age, sex, eye laterality, and year) into the classification process, even when a significant portion of metadata is missing. Our results demonstrate that multimodal models leveraging both image and metadata inputs, such as the Multimodal ResNet18, can achieve competitive performance compared to image-only models, such as DenseNet121. Notably, DenseNet121 and Multimodal ResNet18 achieved the highest accuracy of 95.16%, with DenseNet121 showing a slightly higher F1-score of 0.9313. The multimodal ViT-based model also demonstrated promising results, achieving an accuracy of 93.22%, indicating the potential of Vision Transformers (ViTs) in medical image analysis, especially for handling complex multimodal data.

Exploring the Potential of Retrieval Augmented Generation for Question Answering in Radiology: Initial Findings and Future Directions.

Mou Y, Siepmann RM, Truhnn D, Sowe S, Decker S

pubmed logopapersMay 15 2025
This study explores the application of Retrieval-Augmented Generation (RAG) for question answering in radiology, an area where intelligent systems can significantly impact clinical decision-making. A preliminary experiment tested a naive RAG setup on nice radiology-specific questions with a textbook as the reference source, showing moderate improvements over baseline methods. The paper discusses lessons learned and potential enhancements for RAG in handling radiology knowledge, suggesting pathways for future research in integrating intelligent health systems in medical practice.

External Validation of a CT-Based Radiogenomics Model for the Detection of EGFR Mutation in NSCLC and the Impact of Prevalence in Model Building by Using Synthetic Minority Over Sampling (SMOTE): Lessons Learned.

Kohan AA, Mirshahvalad SA, Hinzpeter R, Kulanthaivelu R, Avery L, Ortega C, Metser U, Hope A, Veit-Haibach P

pubmed logopapersMay 15 2025
Radiogenomics holds promise in identifying molecular alterations in nonsmall cell lung cancer (NSCLC) using imaging features. Previously, we developed a radiogenomics model to predict epidermal growth factor receptor (EGFR) mutations based on contrast-enhanced computed tomography (CECT) in NSCLC patients. The current study aimed to externally validate this model using a publicly available National Institutes of Health (NIH)-based NSCLC dataset and assess the effect of EGFR mutation prevalence on model performance through synthetic minority oversampling technique (SMOTE). The original radiogenomics model was validated on an independent NIH cohort (n=140). For assessing the influence of disease prevalence, six SMOTE-augmented datasets were created, simulating EGFR mutation prevalence from 25% to 50%. Seven models were developed (one from original data, six SMOTE-augmented), each undergoing rigorous cross-validation, feature selection, and logistic regression modeling. Models were tested against the NIH cohort. Performance was compared using area under the receiver operating characteristic curve (Area Under the Curve [AUC]), and differences between radiomic-only, clinical-only, and combined models were statistically assessed. External validation revealed poor diagnostic performance for both our model and a previously published EGFR radiomics model (AUC ∼0.5). The clinical model alone achieved higher diagnostic accuracy (AUC 0.74). SMOTE-augmented models showed increased sensitivity but did not improve overall AUC compared to the clinical-only model. Changing EGFR mutation prevalence had minimal impact on AUC, challenging previous assumptions about the influence of sample imbalance on model performance. External validation failed to reproduce prior radiogenomics model performance, while clinical variables alone retained strong predictive value. SMOTE-based oversampling did not improve diagnostic accuracy, suggesting that, in EGFR prediction, radiomics may offer limited value beyond clinical data. Emphasis on robust external validation and data-sharing is essential for future clinical implementation of radiogenomic models.

Automatic head and neck tumor segmentation through deep learning and Bayesian optimization on three-dimensional medical images.

Douglas Z, Rahman A, Duggar WN, Wang H

pubmed logopapersMay 15 2025
Medical imaging constitutes critical information in the diagnostic and prognostic evaluation of patients, as it serves to uncover a broad spectrum of pathologies and deviances. Clinical practitioners who carry out medical image screening are primarily reliant on their knowledge and experience for disease diagnosis. Convolutional Neural Networks (CNNs) hold the potential to serve as a formidable decision-support tool in the realm of medical image analysis due to their high capacity to extract hierarchical features and effectuate direct classification and segmentation from image data. However, CNNs contain a myriad of hyperparameters and optimizing these hyperparameters poses a major obstacle to the effective implementation of CNNs. In this work, a two-phase Bayesian Optimization-derived Scheduling (BOS) approach is proposed for hyperparameter optimization for the head and cancerous tissue segmentation tasks. We proposed this two-phase BOS approach to incorporate both rapid convergences in the first training phase and slower (but without overfitting) improvements in the last training phase. Furthermore, we found that batch size and learning rate have a significant impact on the training process, but optimizing them separately can lead to sub-optimal hyperparameter combinations. Therefore, batch size and learning rate have been coupled as the batch size to learning rate (B2L) ratio and utilized in the optimization process to optimize both simultaneously. The optimized hyperparameters have been tested for a three-dimensional V-Net model with computed tomography (CT) and positron emission tomography (PET) scans to segment and classify cancerous and noncancerous tissues. The results of 10-fold cross-validation indicate that the optimal batch size to learning rate (B2L) ratio for each phase of the training method can improve the overall medical image segmentation performance.

Machine Learning-Based Multimodal Radiomics and Transcriptomics Models for Predicting Radiotherapy Sensitivity and Prognosis in Esophageal Cancer.

Ye C, Zhang H, Chi Z, Xu Z, Cai Y, Xu Y, Tong X

pubmed logopapersMay 15 2025
Radiotherapy plays a critical role in treating esophageal cancer, but individual responses vary significantly, impacting patient outcomes. This study integrates machine learning-driven multimodal radiomics and transcriptomics to develop predictive models for radiotherapy sensitivity and prognosis in esophageal cancer. We applied the SEResNet101 deep learning model to imaging and transcriptomic data from the UCSC Xena and TCGA databases, identifying prognosis-associated genes such as STUB1, PEX12, and HEXIM2. Using Lasso regression and Cox analysis, we constructed a prognostic risk model that accurately stratifies patients based on survival probability. Notably, STUB1, an E3 ubiquitin ligase, enhances radiotherapy sensitivity by promoting the ubiquitination and degradation of SRC, a key oncogenic protein. In vitro and in vivo experiments confirmed that STUB1 overexpression or SRC silencing significantly improves radiotherapy response in esophageal cancer models. These findings highlight the predictive power of multimodal data integration for individualized radiotherapy planning and underscore STUB1 as a promising therapeutic target for enhancing radiotherapy efficacy in esophageal cancer.
Page 179 of 2052045 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.