Performance of a deep-learning-based lung nodule detection system using 0.25-mm thick ultra-high-resolution CT images.
Higashibori H, Fukumoto W, Kusuda S, Yokomachi K, Mitani H, Nakamura Y, Awai K
Higashibori H, Fukumoto W, Kusuda S, Yokomachi K, Mitani H, Nakamura Y, Awai K
Tabo K, Kido T, Matsuda M, Tokui S, Mizogami G, Takimoto Y, Matsumoto M, Miyoshi M, Kido T
East SA, Wang Y, Yanamala N, Maganti K, Sengupta PP
Ding W, Li L, Qiu J, Lin B, Yang M, Huang L, Wu L, Wang S, Zhuang X
Balkenende L, Ferm J, van Veldhuizen V, Brunekreef J, Teuwen J, Mann RM
Brin D, Gilat EK, Raskin D, Goitein O
Kim J, Jang J, Oh SW, Lee HY, Min EJ, Choi JW, Ahn KJ
Escande R, Jaouen T, Gonindard-Melodelima C, Crouzet S, Kuroda S, Souchon R, Rouvière O, Shoji S
Shi MJ, Wang ZX, Wang SK, Li XH, Zhang YL, Yan Y, An R, Dong LN, Qiu L, Tian T, Liu JX, Song HC, Wang YF, Deng C, Cao ZB, Wang HY, Wang Z, Wei W, Song J, Lu J, Wei X, Wang ZC
von Braun MS, Starke K, Peter L, Kürsten D, Welle F, Schneider HR, Wawrzyniak M, Kaiser DPO, Prasse G, Richter C, Kellner E, Reisert M, Klingbeil J, Stockert A, Hoffmann KT, Scheuermann G, Gillmann C, Saur D
Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.
We respect your privacy. Unsubscribe at any time.