Sort by:
Page 137 of 3473463 results

Performance of a deep-learning-based lung nodule detection system using 0.25-mm thick ultra-high-resolution CT images.

Higashibori H, Fukumoto W, Kusuda S, Yokomachi K, Mitani H, Nakamura Y, Awai K

pubmed logopapersJul 7 2025
Artificial intelligence (AI) algorithms for lung nodule detection assist radiologists. As their performance using ultra-high-resolution CT (U-HRCT) images has not been evaluated, we investigated the usefulness of 0.25-mm slices at U-HRCT using the commercially available deep-learning-based lung nodule detection (DL-LND) system. We enrolled 63 patients who underwent U-HRCT for lung cancer and suspected lung cancer. Two board-certified radiologists identified nodules more than 4 mm in diameter on 1-mm HRCT slices and set the reference standard consensually. They recorded all lesions detected on 5-, 1-, and 0.25-mm slices by the DL-LND system. Unidentified nodules were included in the reference standard. To examine the performance of the DL-LND system, the sensitivity, and positive predictive value (PPV) and the number of false positive (FP) nodules were recorded. The mean number of lesions detected on 5-, 1-, and 0.25-mm slices was 5.1, 7.8 and 7.2 per CT scan. On 5-mm slices the sensitivity and PPV were 79.8% and 46.4%; on 1-mm slices they were 91.5% and 34.8%, and on 0.25-mm slices they were 86.7% and 36.1%. The sensitivity was significantly higher on 1- than 5-mm slices (p < 0.01) while the PPV was significantly lower on 1- than 5-mm slices (p < 0.01). A slice thickness of 0.25 mm failed to improve its performance. The mean number of FP nodules on 5-, 1-, and 0.25-mm slices was 2.8, 5.2, and 4.7 per CT scan. We found that 1 mm was the best slice thickness for U-HRCT images using the commercially available DL-LND system.

Usefulness of compressed sensing coronary magnetic resonance angiography with deep learning reconstruction.

Tabo K, Kido T, Matsuda M, Tokui S, Mizogami G, Takimoto Y, Matsumoto M, Miyoshi M, Kido T

pubmed logopapersJul 7 2025
Coronary magnetic resonance angiography (CMRA) scans are generally time-consuming. CMRA with compressed sensing (CS) and artificial intelligence (AI) (CSAI CMRA) is expected to shorten the imaging time while maintaining image quality. This study aimed to evaluate the usefulness of CS and AI for non-contrast CMRA. Twenty volunteers underwent both CS and conventional CMRA. Conventional CMRA employed parallel imaging (PI) with an acceleration factor of 2. CS CMRA employed a combination of PI and CS with an acceleration factor of 3. Deep learning reconstruction was performed offline on the CS CMRA data after scanning, which was defined as CSAI CMRA. We compared the imaging time, image quality, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and vessel sharpness for each CMRA scan. The CS CMRA scan time was significantly shorter than that of conventional CMRA (460 s [343,753 s] vs. 727 s [567,939 s], p < 0.001). The image quality scores of the left anterior descending artery (LAD) and left circumflex artery (LCX) were significantly higher in conventional CMRA (LAD: 3.3 ± 0.7, LCX: 3.3 ± 0.7) and CSAI CMRA (LAD: 3.7 ± 0.6, LCX: 3.5 ± 0.7) than the CS CMRA (LAD: 2.9 ± 0.6, LCX: 2.9 ± 0.6) (p < 0.05). The right coronary artery scores did not vary among the three groups (p = 0.087). The SNR and CNR were significantly higher in CSAI CMRA (SNR: 12.3 [9.7, 13.7], CNR: 12.3 [10.5, 14.5]) and CS CMRA (SNR: 10.5 [8.2, 12.6], CNR: 9.5 [7.9, 12.6]) than conventional CMRA (SNR: 9.0 [7.8, 11.1], CNR: 7.7 [6.0, 10.1]) (p < 0.01). The vessel sharpness was significantly higher in CSAI CMRA (LAD: 0.87 [0.78, 0.91]) (p < 0.05), with no significant difference between the CS CMRA (LAD: 0.77 [0.71, 0.83]) and conventional CMRA (LAD: 0.77 [0.71, 0.86]). CSAI CMRA can shorten the imaging time while maintaining good image quality.

Artificial Intelligence-Enabled Point-of-Care Echocardiography: Bringing Precision Imaging to the Bedside.

East SA, Wang Y, Yanamala N, Maganti K, Sengupta PP

pubmed logopapersJul 7 2025
The integration of artificial intelligence (AI) with point-of-care ultrasound (POCUS) is transforming cardiovascular diagnostics by enhancing image acquisition, interpretation, and workflow efficiency. These advancements hold promise in expanding access to cardiovascular imaging in resource-limited settings and enabling early disease detection through screening applications. This review explores the opportunities and challenges of AI-enabled POCUS as it reshapes the landscape of cardiovascular imaging. AI-enabled systems can reduce operator dependency, improve image quality, and support clinicians-both novice and experienced-in capturing diagnostically valuable images, ultimately promoting consistency across diverse clinical environments. However, widespread adoption faces significant challenges, including concerns around algorithm generalizability, bias, explainability, clinician trust, and data privacy. Addressing these issues through standardized development, ethical oversight, and clinician-AI collaboration will be critical to safe and effective implementation. Looking ahead, emerging innovations-such as autonomous scanning, real-time predictive analytics, tele-ultrasound, and patient-performed imaging-underscore the transformative potential of AI-enabled POCUS in reshaping cardiovascular care and advancing equitable healthcare delivery worldwide.

CineMyoPS: Segmenting Myocardial Pathologies from Cine Cardiac MR.

Ding W, Li L, Qiu J, Lin B, Yang M, Huang L, Wu L, Wang S, Zhuang X

pubmed logopapersJul 7 2025
Myocardial infarction (MI) is a leading cause of death worldwide. Late gadolinium enhancement (LGE) and T2-weighted cardiac magnetic resonance (CMR) imaging can respectively identify scarring and edema areas, both of which are essential for MI risk stratification and prognosis assessment. Although combining complementary information from multi-sequence CMR is useful, acquiring these sequences can be time-consuming and prohibitive, e.g., due to the administration of contrast agents. Cine CMR is a rapid and contrast-free imaging technique that can visualize both motion and structural abnormalities of the myocardium induced by acute MI. Therefore, we present a new end-to-end deep neural network, referred to as CineMyoPS, to segment myocardial pathologies, i.e., scars and edema, solely from cine CMR images. Specifically, CineMyoPS extracts both motion and anatomy features associated with MI. Given the interdependence between these features, we design a consistency loss (resembling the co-training strategy) to facilitate their joint learning. Furthermore, we propose a time-series aggregation strategy to integrate MI-related features across the cardiac cycle, thereby enhancing segmentation accuracy for myocardial pathologies. Experimental results on a multi-center dataset demonstrate that CineMyoPS achieves promising performance in myocardial pathology segmentation, motion estimation, and anatomy segmentation.

Potential Time and Recall Benefits for Adaptive AI-Based Breast Cancer MRI Screening.

Balkenende L, Ferm J, van Veldhuizen V, Brunekreef J, Teuwen J, Mann RM

pubmed logopapersJul 7 2025
Abbreviated breast MRI protocols are advocated for breast screening as they limit acquisition duration and increase resource availability. However, radiologists' specificity may be slightly lowered when only such short protocols are evaluated. An adaptive approach, where a full protocol is performed only when abnormalities are detected by artificial intelligence (AI)-based models in the abbreviated protocol, might improve and speed up MRI screening. This study explores the potential benefits of such an approach. To assess the potential impact of adaptive breast MRI scanning based on AI detection of malignancies. Mathematical model. Breast cancer screening protocols. Theoretical upper and lower limits on expected protocol duration and recall rate were determined for the adaptive approach, and the influence of the AI model and radiologists' performance metrics on these limits was assessed, under the assumption that any finding on the abbreviated protocol would, in an ideal follow-up scenario, prompt a second MRI with the full protocol. Estimated most likely scenario. Theoretical limits for the proposed adaptive AI-based MRI breast cancer screening showed that the recall rates of the abbreviated and full screening protocols always constrained the recall rate. These abbreviated and full protocols did not fully constrain the expected protocol duration, and an adaptive protocol's expected duration could thus be shorter than the abbreviated protocol duration. Specificity, either from AI models or radiologists, has the largest effect on the theoretical limits. In the most likely scenario, the adaptive protocol achieved an expected protocol duration reduction of ~47%-60% compared with the full protocol. The proposed adaptive approach may offer a reduction in expected protocol duration compared with the use of the full protocol alone, and a lower recall rate relative to an abbreviated-only approach could be achieved. Optimal performance was observed when AI models emulated radiologists' decision-making behavior, rather than focusing solely on near-perfect malignancy detection. Not applicable. Stage 6.

Evaluation of AI-based detection of incidental pulmonary emboli in cardiac CT angiography scans.

Brin D, Gilat EK, Raskin D, Goitein O

pubmed logopapersJul 7 2025
Incidental pulmonary embolism (PE) is detected in 1% of cardiac CT angiography (CCTA) scans, despite the targeted aortic opacification and limited field of view. While artificial intelligence (AI) algorithms have proven effective in detecting PE in CT pulmonary angiography (CTPA), their use in CCTA remains unexplored. This study aimed to evaluate the feasibility of an AI algorithm for detecting incidental PE in CCTA scans. A dedicated AI algorithm was retrospectively applied to CCTA scans to detect PE. Radiology reports were reviewed using a natural language processing (NLP) tool to detect mentions of PE. Discrepancies between the AI and radiology reports triggered a blinded review by a cardiothoracic radiologist. All scans identified as positive for PE were thoroughly assessed for radiographic features, including the location of emboli and right ventricular (RV) strain. The performance of the AI algorithm for PE detection was compared to the original radiology report. Between 2021 and 2023, 1534 CCTA scans were analyzed. The AI algorithm identified 27 positive PE scans, with a subsequent review confirming PE in 22/27 cases. Of these, 10 (45.5%) were missed in the initial radiology report, all involving segmental or subsegmental arteries (P < 0.05) with no evidence of RV strain. This study demonstrates the feasibility of using an AI algorithm to detect incidental PE in CCTA scans. A notable radiology report miss rate (45.5%) of segmental and subsegmental emboli was documented. While these findings emphasize the potential value of AI for PE detection in the daily radiology workflow, further research is needed to fully determine its clinical impact.

Impact of a computed tomography-based artificial intelligence software on radiologists' workflow for detecting acute intracranial hemorrhage.

Kim J, Jang J, Oh SW, Lee HY, Min EJ, Choi JW, Ahn KJ

pubmed logopapersJul 7 2025
To assess the impact of a commercially available computed tomography (CT)-based artificial intelligence (AI) software for detecting acute intracranial hemorrhage (AIH) on radiologists' diagnostic performance and workflow in a real-world clinical setting. This retrospective study included a total of 956 non-contrast brain CT scans obtained over a 70-day period, interpreted independently by 2 board-certified general radiologists. Of these, 541 scans were interpreted during the initial 35 days before the implementation of AI software, and the remaining 415 scans were interpreted during the subsequent 35 days, with reference to AIH probability scores generated by the software. To assess the software's impact on radiologists' performance in detecting AIH, performance before and after implementation was compared. Additionally, to evaluate the software's effect on radiologists' workflow, Kendall's Tau was used to assess the correlation between the daily chronological order of CT scans and the radiologists' reading order before and after implementation. The early diagnosis rate for AIH (defined as the proportion of AIH cases read within the first quartile by radiologists) and the median reading order of AIH cases were also compared before and after implementation. A total of 956 initial CT scans from 956 patients [mean age: 63.14 ± 18.41 years; male patients: 447 (47%)] were included. There were no significant differences in accuracy [from 0.99 (95% confidence interval: 0.99-1.00) to 0.99 (0.98-1.00), <i>P</i> = 0.343], sensitivity [from 1.00 (0.99-1.00) to 1.00 (0.99-1.00), <i>P</i> = 0.859], or specificity [from 1.00 (0.99-1.00) to 0.99 (0.97-1.00), <i>P</i> = 0.252] following the implementation of the AI software. However, the daily correlation between the chronological order of CT scans and the radiologists' reading order significantly decreased [Kendall's Tau, from 0.61 (0.48-0.73) to 0.01 (0.00-0.26), <i>P</i> < 0.001]. Additionally, the early diagnosis rate significantly increased [from 0.49 (0.34-0.63) to 0.76 (0.60-0.93), <i>P</i> = 0.013], and the daily median reading order of AIH cases significantly decreased [from 7.25 (Q1-Q3: 3-10.75) to 1.5 (1-3), <i>P</i> < 0.001] after the implementation. After the implementation of CT-based AI software for detecting AIH, the radiologists' daily reading order was considerably reprioritized to allow more rapid interpretation of AIH cases without compromising diagnostic performance in a real-world clinical setting. With the increasing number of CT scans and the growing burden on radiologists, optimizing the workflow for diagnosing AIH through CT-based AI software integration may enhance the prompt and efficient treatment of patients with AIH.

External Validation on a Japanese Cohort of a Computer-Aided Diagnosis System Aimed at Characterizing ISUP ≥ 2 Prostate Cancers at Multiparametric MRI.

Escande R, Jaouen T, Gonindard-Melodelima C, Crouzet S, Kuroda S, Souchon R, Rouvière O, Shoji S

pubmed logopapersJul 7 2025
To evaluate the generalizability of a computer-aided diagnosis (CADx) system based on the apparent diffusion coefficient (ADC) and wash-in rate, and trained on a French population to diagnose International Society of Urological Pathology ≥ 2 prostate cancer on multiparametric MRI. Sixty-eight consecutive patients who underwent radical prostatectomy at a single Japanese institution were retrospectively included. Pre-prostatectomy MRIs were reviewed by an experienced radiologist who assigned to suspicious lesions a Prostate Imaging-Reporting and Data System version 2.1 (PI-RADSv2.1) score and delineated them. The CADx score was computed from these regions-of-interest. Using prostatectomy whole-mounts as reference, the CADx and PI-RADSv2.1 scores were compared at the lesion level using areas under the receiver operating characteristic curves (AUC), and sensitivities and specificities obtained with predefined thresholds. In PZ, AUCs were 80% (95% confidence interval [95% CI]: 71-90) for the CADx score and 80% (95% CI: 71-89; p = 0.886) for the PI-RADSv2.1score; in TZ, AUCs were 79% (95% CI: 66-90) for the CADx score and 93% (95% CI: 82-96; p = 0.051) for the PI-RADSv2.1 score. The CADx diagnostic thresholds that provided sensitivities of 86%-91% and specificities of 64%-75% in French test cohorts yielded sensitivities of 60% (95% CI: 38-83) in PZ and 42% (95% CI: 20-71) in TZ, with specificities of 95% (95% CI: 86-100) and 92% (95% CI: 73-100), respectively. This shift may be attributed to higher ADC values and lower dynamic contrast-enhanced temporal resolution in the test cohort. The CADx obtained good overall results in this external cohort. However, predefined diagnostic thresholds provided lower sensitivities and higher specificities than expected.

Performance of GPT-4 for automated prostate biopsy decision-making based on mpMRI: a multi-center evidence study.

Shi MJ, Wang ZX, Wang SK, Li XH, Zhang YL, Yan Y, An R, Dong LN, Qiu L, Tian T, Liu JX, Song HC, Wang YF, Deng C, Cao ZB, Wang HY, Wang Z, Wei W, Song J, Lu J, Wei X, Wang ZC

pubmed logopapersJul 7 2025
Multiparametric magnetic resonance imaging (mpMRI) has significantly advanced prostate cancer (PCa) detection, yet decisions on invasive biopsy with moderate prostate imaging reporting and data system (PI-RADS) scores remain ambiguous. To explore the decision-making capacity of Generative Pretrained Transformer-4 (GPT-4) for automated prostate biopsy recommendations, we included 2299 individuals who underwent prostate biopsy from 2018 to 2023 in 3 large medical centers, with available mpMRI before biopsy and documented clinical-histopathological records. GPT-4 generated structured reports with given prompts. The performance of GPT-4 was quantified using confusion matrices, and sensitivity, specificity, as well as area under the curve were calculated. Multiple artificial evaluation procedures were conducted. Wilcoxon's rank sum test, Fisher's exact test, and Kruskal-Wallis tests were used for comparisons. Utilizing the largest sample size in the Chinese population, patients with moderate PI-RADS scores (scores 3 and 4) accounted for 39.7% (912/2299), defined as the subset-of-interest (SOI). The detection rates of clinically significant PCa corresponding to PI-RADS scores 2-5 were 9.4, 27.3, 49.2, and 80.1%, respectively. Nearly 47.5% (433/912) of SOI patients were histopathologically proven to have undergone unnecessary prostate biopsies. With the assistance of GPT-4, 20.8% (190/912) of the SOI population could avoid unnecessary biopsies, and it performed even better [28.8% (118/410)] in the most heterogeneous subgroup of PI-RADS score 3. More than 90.0% of GPT-4 -generated reports were comprehensive and easy to understand, but less satisfied with the accuracy (82.8%). GPT-4 also demonstrated cognitive potential for handling complex problems. Additionally, the Chain of Thought method enabled us to better understand the decision-making logic behind GPT-4. Eventually, we developed a ProstAIGuide platform to facilitate accessibility for both doctors and patients. This multi-center study highlights the clinical utility of GPT-4 for prostate biopsy decision-making and advances our understanding of the latest artificial intelligence implementation in various medical scenarios.

Prediction of tissue and clinical thrombectomy outcome in acute ischaemic stroke using deep learning.

von Braun MS, Starke K, Peter L, Kürsten D, Welle F, Schneider HR, Wawrzyniak M, Kaiser DPO, Prasse G, Richter C, Kellner E, Reisert M, Klingbeil J, Stockert A, Hoffmann KT, Scheuermann G, Gillmann C, Saur D

pubmed logopapersJul 7 2025
The advent of endovascular thrombectomy has significantly improved outcomes for stroke patients with intracranial large vessel occlusion, yet individual benefits can vary widely. As demand for thrombectomy rises and geographical disparities in stroke care access persist, there is a growing need for predictive models that quantify individual benefits. However, current imaging methods for estimating outcomes may not fully capture the dynamic nature of cerebral ischaemia and lack a patient-specific assessment of thrombectomy benefits. Our study introduces a deep learning approach to predict individual responses to thrombectomy in acute ischaemic stroke patients. The proposed models provide predictions for both tissue and clinical outcomes under two scenarios: one assuming successful reperfusion and another assuming unsuccessful reperfusion. The resulting simulations of penumbral salvage and difference in National Institutes of Health Stroke Scale (NIHSS) at discharge quantify the potential individual benefits of the intervention. Our models were developed on an extensive dataset from routine stroke care, which included 405 ischaemic stroke patients who underwent thrombectomy. We used acute data for training (n = 304), including multimodal CT imaging and clinical characteristics, along with post hoc markers such as thrombectomy success, final infarct localization and NIHSS at discharge. We benchmarked our tissue outcome predictions under the observed reperfusion scenario against a thresholding-based clinical method and a generalized linear model. Our deep learning model showed significant superiority, with a mean Dice score of 0.48 on internal test data (n = 50) and 0.52 on external test data (n = 51), versus 0.26/0.36 and 0.34/0.35 for the baselines, respectively. The NIHSS sum score prediction achieved median absolute errors of 1.5 NIHSS points on the internal test dataset and 3.0 NIHSS points on the external test dataset, outperforming other machine learning models. By predicting the patient-specific response to thrombectomy for both tissue and clinical outcomes, our approach offers an innovative biomarker that captures the dynamics of cerebral ischaemia. We believe this method holds significant potential to enhance personalized therapeutic strategies and to facilitate efficient resource allocation in acute stroke care.
Page 137 of 3473463 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.