Sort by:
Page 132 of 3473463 results

Applicability and performance of convolutional neural networks for the identification of periodontal bone loss in periapical radiographs: a scoping review.

Putra RH, Astuti ER, Nurrachman AS, Savitri Y, Vadya AV, Khairunisa ST, Iikubo M

pubmed logopapersJul 9 2025
The study aimed to review the applicability and performance of various Convolutional Neural Network (CNN) models for the identification of periodontal bone loss (PBL) in digital periapical radiographs achieved through classification, detection, and segmentation approaches. We searched the PubMed, IEEE Xplore, and SCOPUS databases for articles published up to June 2024. After the selection process, a total of 11 studies were included in this review. The reviewed studies demonstrated that CNNs have a significant potential application for automatic identification of PBL on periapical radiographs through classification and segmentation approaches. CNN architectures can be utilized to classify the presence or absence of PBL, the severity or degree of PBL, and PBL area segmentation. CNN showed a promising performance for PBL identification on periapical radiographs. Future research should focus on dataset preparation, proper selection of CNN architecture, and robust performance evaluation to improve the model. Utilizing an optimized CNN architecture is expected to assist dentists by providing accurate and efficient identification of PBL.

Securing Healthcare Data Integrity: Deepfake Detection Using Autonomous AI Approaches.

Hsu CC, Tsai MY, Yu CM

pubmed logopapersJul 9 2025
The rapid evolution of deepfake technology poses critical challenges to healthcare systems, particularly in safeguarding the integrity of medical imaging, electronic health records (EHR), and telemedicine platforms. As autonomous AI becomes increasingly integrated into smart healthcare, the potential misuse of deepfakes to manipulate sensitive healthcare data or impersonate medical professionals highlights the urgent need for robust and adaptive detection mechanisms. In this work, we propose DProm, a dynamic deepfake detection framework leveraging visual prompt tuning (VPT) with a pre-trained Swin Transformer. Unlike traditional static detection models, which struggle to adapt to rapidly evolving deepfake techniques, DProm fine-tunes a small set of visual prompts to efficiently adapt to new data distributions with minimal computational and storage requirements. Comprehensive experiments demonstrate that DProm achieves state-of-the-art performance in both static cross-dataset evaluations and dynamic scenarios, ensuring robust detection across diverse data distributions. By addressing the challenges of scalability, adaptability, and resource efficiency, DProm offers a transformative solution for enhancing the security and trustworthiness of autonomous AI systems in healthcare, paving the way for safer and more reliable smart healthcare applications.

MRI-based interpretable clinicoradiological and radiomics machine learning model for preoperative prediction of pituitary macroadenomas consistency: a dual-center study.

Liang M, Wang F, Yang Y, Wen L, Wang S, Zhang D

pubmed logopapersJul 9 2025
To establish an interpretable and non-invasive machine learning (ML) model using clinicoradiological predictors and magnetic resonance imaging (MRI) radiomics features to predict the consistency of pituitary macroadenomas (PMAs) preoperatively. Total 350 patients with PMA (272 from Xinqiao Hospital of Army Medical University and 78 from Daping Hospital of Army Medical University) were stratified and randomly divided into training and test cohorts in a 7:3 ratio. The tumor consistency was classified as soft or firm. Clinicoradiological predictors were examined utilizing univariate and multivariate regression analyses. Radiomics features were selected employing the minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) algorithms. Logistic regression (LR) and random forest (RF) classifiers were applied to construct the models. Receiver operating characteristic (ROC) curves and decision curve analyses (DCA) were performed to compare and validate the predictive capacities of the models. A comparative study of the area under the curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE) was performed. The Shapley additive explanation (SHAP) was applied to investigate the optimal model's interpretability. The combined model predicted the PMAs' consistency more effectively than the clinicoradiological and radiomics models. Specifically, the LR-combined model displayed optimal prediction performance (test cohort: AUC = 0.913; ACC = 0.840). The SHAP-based explanation of the LR-combined model suggests that the wavelet-transformed and Laplacian of Gaussian (LoG) filter features extracted from T<sub>2</sub>WI and CE-T<sub>1</sub>WI occupy a dominant position. Meanwhile, the skewness of the original first-order features extracted from T<sub>2</sub>WI (T<sub>2</sub>WI_original_first-order_Skewness) demonstrated the most substantial contribution. An interpretable machine learning model incorporating clinicoradiological predictors and multiparametric MRI (mpMRI)-based radiomics features may predict PMAs consistency, enabling tailored and precise therapies for patients with PMA.

AI Revolution in Radiology, Radiation Oncology and Nuclear Medicine: Transforming and Innovating the Radiological Sciences.

Carriero S, Canella R, Cicchetti F, Angileri A, Bruno A, Biondetti P, Colciago RR, D'Antonio A, Della Pepa G, Grassi F, Granata V, Lanza C, Santicchia S, Miceli A, Piras A, Salvestrini V, Santo G, Pesapane F, Barile A, Carrafiello G, Giovagnoni A

pubmed logopapersJul 9 2025
The integration of artificial intelligence (AI) into clinical practice, particularly within radiology, nuclear medicine and radiation oncology, is transforming diagnostic and therapeutic processes. AI-driven tools, especially in deep learning and machine learning, have shown remarkable potential in enhancing image recognition, analysis and decision-making. This technological advancement allows for the automation of routine tasks, improved diagnostic accuracy, and the reduction of human error, leading to more efficient workflows. Moreover, the successful implementation of AI in healthcare requires comprehensive education and training for young clinicians, with a pressing need to incorporate AI into residency programmes, ensuring that future specialists are equipped with traditional skills and a deep understanding of AI technologies and their clinical applications. This includes knowledge of software, data analysis, imaging informatics and ethical considerations surrounding AI use in medicine. By fostering interdisciplinary integration and emphasising AI education, healthcare professionals can fully harness AI's potential to improve patient outcomes and advance the field of medical imaging and therapy. This review aims to evaluate how AI influences radiology, nuclear medicine and radiation oncology, while highlighting the necessity for specialised AI training in medical education to ensure its successful clinical integration.

Prediction of Early Neoadjuvant Chemotherapy Response of Breast Cancer through Deep Learning-based Pharmacokinetic Quantification of DCE MRI.

Wu C, Wang L, Wang N, Shiao S, Dou T, Hsu YC, Christodoulou AG, Xie Y, Li D

pubmed logopapersJul 9 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To improve the generalizability of pathologic complete response (pCR) prediction following neoadjuvant chemotherapy using deep learning (DL)-based retrospective pharmacokinetic quantification (RoQ) of early-treatment dynamic contrast-enhanced (DCE) MRI. Materials and Methods This multicenter retrospective study included breast MRI data from four publicly available datasets of patients with breast cancer acquired from May 2002 to November 2016. RoQ was performed using a previously developed DL model for clinical multiphasic DCE-MRI datasets. Radiomic analysis was performed on RoQ maps and conventional enhancement maps. These data, together with clinicopathologic variables and shape-based radiomic analysis, were subsequently applied in pCR prediction using logistic regression. Prediction performance was evaluated by area under the receiver operating characteristic curve (AUC). Results A total of 1073 female patients with breast cancer were included. The proposed method showed improved consistency and generalizability compared with the reference method, achieving higher AUCs across external datasets (0.82 [CI: 0.72-0.91], 0.75 [CI: 0.71-0.79], and 0.77 [CI: 0.66-0.86] for Datasets A2, B, and C, respectively). On Dataset A2 (from the same study as the training dataset), there was no significant difference in performance between the proposed method and reference method (<i>P</i> = .80). Notably, on the combined external datasets, the proposed method significantly outperformed the reference method (AUC: 0.75 [CI: 0.72- 0.79] vs 0.71 [CI: 0.68-0.76], <i>P</i> = .003). Conclusion This work offers a novel approach to improve the generalizability and predictive accuracy of pCR response in breast cancer across diverse datasets, achieving higher and more consistent AUC scores than existing methods. ©RSNA, 2025.

Development of Artificial Intelligence-Assisted Lumbar and Femoral BMD Estimation System Using Anteroposterior Lumbar X-Ray Images.

Moro T, Yoshimura N, Saito T, Oka H, Muraki S, Iidaka T, Tanaka T, Ono K, Ishikura H, Wada N, Watanabe K, Kyomoto M, Tanaka S

pubmed logopapersJul 9 2025
The early detection and treatment of osteoporosis and prevention of fragility fractures are urgent societal issues. We developed an artificial intelligence-assisted diagnostic system that estimated not only lumbar bone mineral density but also femoral bone mineral density from anteroposterior lumbar X-ray images. We evaluated the performance of lumbar and femoral bone mineral density estimations and the osteoporosis classification accuracy of an artificial intelligence-assisted diagnostic system using lumbar X-ray images from a population-based cohort. The artificial neural network consisted of a deep neural network for estimating lumbar and femoral bone mineral density values and classifying lumbar X-ray images into osteoporosis categories. The deep neural network was built by training dual-energy X-ray absorptiometry-derived lumbar and femoral bone mineral density values as the ground truth of the training data and preprocessed X-ray images. Five-fold cross-validation was performed to evaluate the accuracy of the estimated BMD. A total of 1454 X-ray images from 1454 participants were analyzed using the artificial neural network. For the bone mineral density estimation performance, the mean absolute errors were 0.076 g/cm<sup>2</sup> for the lumbar and 0.071 g/cm<sup>2</sup> for the femur between dual-energy X-ray absorptiometry-derived and artificial intelligence-estimated bone mineral density values. The classification performances for the lumbar and femur of patients with osteopenia, in terms of sensitivity, were 86.4% and 80.4%, respectively, and the respective specificities were 84.1% and 76.3%. CLINICAL SIGNIFICANCE: The system was able to estimate the bone mineral density and classify the osteoporosis category of not only patients in clinics or hospitals but also of general inhabitants.

Integrative multimodal ultrasound and radiomics for early prediction of neoadjuvant therapy response in breast cancer: a clinical study.

Wang S, Liu J, Song L, Zhao H, Wan X, Peng Y

pubmed logopapersJul 9 2025
This study aimed to develop an early predictive model for neoadjuvant therapy (NAT) response in breast cancer by integrating multimodal ultrasound (conventional B-mode, shear-wave elastography, and contrast-enhanced ultrasound) and radiomics with clinical-pathological data, and to evaluate its predictive accuracy after two cycles of NAT. This retrospective study included 239 breast cancer patients receiving neoadjuvant therapy, divided into training (n = 167) and validation (n = 72) cohorts. Multimodal ultrasound-B-mode, shear-wave elastography (SWE), and contrast-enhanced ultrasound (CEUS)-was performed at baseline and after two cycles. Tumors were segmented using a U-Net-based deep learning model with radiologist adjustment, and radiomic features were extracted via PyRadiomics. Candidate variables were screened using univariate analysis and multicollinearity checks, followed by LASSO and stepwise logistic regression to build three models: a clinical-ultrasound model, a radiomics-only model, and a combined model. Model performance for early response prediction was assessed using ROC analysis. In the training cohort (n = 167), Model_Clinic achieved an AUC of 0.85, with HER2 positivity, maximum tumor stiffness (Emax), stiffness heterogeneity (Estd), and the CEUS "radiation sign" emerging as independent predictors (all P < 0.05). The radiomics model showed moderate performance at baseline (AUC 0.69) but improved after two cycles (AUC 0.83), and a model using radiomic feature changes achieved an AUC of 0.79. Model_Combined demonstrated the best performance with a training AUC of 0.91 (sensitivity 89.4%, specificity 82.9%). In the validation cohort (n = 72), all models showed comparable AUCs (Model_Combined ~ 0.90) without significant degradation, and Model_Combined significantly outperformed Model_Clinic and Model_RSA (DeLong P = 0.006 and 0.042, respectively). In our study, integrating multimodal ultrasound and radiomic features improved the early prediction of NAT response in breast cancer, and could provide valuable information to enable timely treatment adjustments and more personalized management strategies.

Evolution of CT perfusion software in stroke imaging: from deconvolution to artificial intelligence.

Gragnano E, Cocozza S, Rizzuti M, Buono G, Elefante A, Guida A, Marseglia M, Tarantino M, Manganelli F, Tortora F, Briganti F

pubmed logopapersJul 9 2025
Computed tomography perfusion (CTP) represents one of the main determinants in the decision-making strategy of stroke patients, being very useful in triaging these patients. The aim of this review is to describe the current knowledge and the future applications of AI in CTP. This review contains a short technical description of the CTP technique and how perfusion parameters are currently estimated and applied in clinical practice. We then provided a comprehensive literature review on the performance of CTP analysis software aimed at understanding whether possible differences between commercially available software might have a direct implication on neuroradiological patient stratification, and therefore on their clinical outcomes. An overview of past, present, and future of software used for CTP estimation, with an emphasis on those AI-based, is provided. Finally, future challenges regarding technical aspects and ethical considerations are discussed. In the current state, most of the use of AI in CTP estimation is limited to some technical steps of the processing pipeline, and especially in the correction of motion artifacts, with deconvolution methods that are still widely used to generate CTP-derived variables. Major drawbacks in AI implementation are still present, especially regarding the "black-box" nature of some models, technical workflow implementations, and the economic costs. In the future, the integration of AI with all the information available in clinical practice should fulfill the aim of developing patient-specific CTP maps, which will overcome the current limitations of threshold-based decision-making processes and will lead physicians to better patient selection and earlier and more efficient treatments. KEY POINTS: Question AI is a widely investigated field in neuroradiology, yet no comprehensive review is yet available on its role in CT perfusion (CTP) in stroke patients. Findings AI in CTP is mainly used for motion correction; future integration with clinical data could enable personalized stroke treatment, despite ethical and economic challenges. Clinical relevance To date, AI in CTP mainly finds applications in image motion correction; although some ethical, technical, and vendor standardization issues remain, integrating AI with clinical data in stroke patients promises a possible improvement in patient outcomes.

Automated Detection of Focal Bone Marrow Lesions From MRI: A Multi-center Feasibility Study in Patients with Monoclonal Plasma Cell Disorders.

Wennmann M, Kächele J, von Salomon A, Nonnenmacher T, Bujotzek M, Xiao S, Martinez Mora A, Hielscher T, Hajiyianni M, Menis E, Grözinger M, Bauer F, Riebl V, Rotkopf LT, Zhang KS, Afat S, Besemer B, Hoffmann M, Ringelstein A, Graeven U, Fedders D, Hänel M, Antoch G, Fenk R, Mahnken AH, Mann C, Mokry T, Raab MS, Weinhold N, Mai EK, Goldschmidt H, Weber TF, Delorme S, Neher P, Schlemmer HP, Maier-Hein K

pubmed logopapersJul 9 2025
To train and test an AI-based algorithm for automated detection of focal bone marrow lesions (FL) from MRI. This retrospective feasibility study included 444 patients with monoclonal plasma cell disorders. For this feasibility study, only FLs in the left pelvis were included. Using the nnDetection framework, the algorithm was trained based on 334 patients with 494 FLs from center 1, and was tested on an internal test set (36 patients, 89 FLs, center 1) and a multicentric external test set (74 patients, 262 FLs, centers 2-11). Mean average precision (mAP), F1-score, sensitivity, positive predictive value (PPV), and Spearman correlation coefficient between automatically determined and actual number of FLs were calculated. On the internal/external test set, the algorithm achieved a mAP of 0.44/0.34, F1-Score of 0.54/0.44, sensitivity of 0.49/0.34, and a PPV of 0.61/0.61, respectively. In two subsets of the external multicentric test set with high imaging quality, the performance nearly matched that of the internal test set, with mAP of 0.45/0.41, F1-Score of 0.50/0.53, sensitivity of 0.44/0.43, and a PPV of 0.60/0.71, respectively. There was a significant correlation between the automatically determined and actual number of FLs on both the internal (r=0.51, p=0.001) and external multicentric test set (r=0.59, p<0.001). This study demonstrates that the automated detection of FLs from MRI, and thereby the automated assessment of the number of FLs, is feasible.

Altered hemispheric lateralization of cortico-basal ganglia-thalamic network associated with gene expression and neurotransmitter profiles as potential biomarkers for panic disorder.

Han Y, Yan H, Shan X, Li H, Liu F, Li P, Yuan Y, Lv D, Guo W

pubmed logopapersJul 9 2025
Functional brain lateralization, a key feature of the human brain that shows alterations in various mental disorders, remains poorly understood in panic disorder (PD), and its investigation may provide valuable insights into the neurobiological underpinnings of psychiatric conditions. This study investigates hemispheric lateralization in drug-naive patients with PD before and after treatment, explores its associations with gene expression and neurotransmitter profiles, and examines its utility for diagnosis and treatment outcome prediction. Fifty-eight patients and 85 healthy controls (HCs) were enrolled. Clinical assessments and resting-state functional magnetic resonance imaging scans were conducted before and after a 4-week paroxetine monotherapy. Intra-hemispheric functional connectivity strength (FCS), inter-hemispheric FCS, and parameter of asymmetry (PAS) were calculated. Imaging-transcriptomic and imaging-neurotransmitter correlation analyses were conducted. PAS was used in machine learning models for classification and treatment outcome prediction. Compared with HCs, patients exhibited enhanced intra-hemispheric FCS and decreased PAS in the caudate nucleus/pallidum and thalamus, with associated genes, dopamine and serotonin receptor densities, and vesicular acetylcholine transporter densities linking these lateralization alterations to neural signaling and synaptic function. FCS and PAS results were consistent across different correlation thresholds (0.15, 0.2, and 0.25). No significant changes in FCS or PAS were observed following treatment. PAS demonstrated excellent performance in classification (accuracy = 75.52 %) and treatment outcomes prediction (r = 0.763). Hemispheric lateralization in the cortico-basal ganglia-thalamic network was significantly altered in patients with PD, with these changes linked to disruptions in genes and neurotransmitter profiles which are associated with neural signal transduction and synaptic function. PAS shows promise as a biomarker for PD diagnosis and treatment outcome prediction.
Page 132 of 3473463 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.