Sort by:
Page 12 of 50495 results

Prognostic value of body composition out of PSMA-PET/CT in prostate cancer patients undergoing PSMA-therapy.

Roll W, Plagwitz L, Ventura D, Masthoff M, Backhaus C, Varghese J, Rahbar K, Schindler P

pubmed logopapersJun 28 2025
This retrospective study aims to develop a deep learning-based approach to whole-body CT segmentation out of standard PSMA-PET-CT to assess body composition in metastatic castration resistant prostate cancer (mCRPC) patients prior to [<sup>177</sup>Lu]Lu-PSMA radioligand therapy (RLT). Our goal is to go beyond standard PSMA-PET-based pretherapeutic assessment and identify additional body composition metrics out of the CT-component, with potential prognostic value. We used a deep learning segmentation model to perform fully automated segmentation of different tissue compartments, including visceral- (VAT), subcutaneous- (SAT), intra/intermuscular- adipose tissue (IMAT) from [<sup>68</sup> Ga]Ga-PSMA-PET-CT scans of n = 86 prostate cancer patients before RLT. The proportions of different adipose tissue compartments to total adipose tissue (TAT) assessed on a 3D CT-volume of the abdomen or on a 2D single slice basis (centered at third lumbal vertebra (L3)) were compared for their prognostic value. First, univariate and multivariate Cox proportional hazards regression analyses were performed. Subsequently, the subjects were dichotomized at the median tissue composition, and these subgroups were evaluated by Kaplan-Meier analysis with the log-rank test. The automated segmentation model was useful for delineating different adipose tissue compartments and skeletal muscle across different patient anatomies. Analyses revealed significant correlations between lower SAT and higher IMAT ratios and poorer therapeutic outcomes in Cox regression analysis (SAT/TAT: p = 0.038; IMAT/TAT: p < 0.001) in the 3D model. In the single slice approach only IMAT/SAT was significantly associated with survival in Cox regression analysis (p < 0.001; SAT/TAT: p > 0.05). IMAT ratio remained an independent predictor of survival in multivariate analysis when including PSMA-PET and blood-based prognostic factors. In this proof-of-principle study the implementation of a deep learning-based whole-body analysis provides a robust and detailed CT-based assessment of body composition in mCRPC patients undergoing RLT. Potential prognostic parameters have to be corroborated in larger prospective datasets.

<sup>Advanced glaucoma disease segmentation and classification with grey wolf optimized U</sup> <sup>-Net++ and capsule networks</sup>.

Govindharaj I, Deva Priya W, Soujanya KLS, Senthilkumar KP, Shantha Shalini K, Ravichandran S

pubmed logopapersJun 27 2025
Early detection of glaucoma represents a vital factor in securing vision while the disease retains its position as one of the central causes of blindness worldwide. The current glaucoma screening strategies with expert interpretation depend on complex and time-consuming procedures which slow down both diagnosis processes and intervention timing. This research adopts a complex automated glaucoma diagnostic system that combines optimized segmentation solutions together with classification platforms. The proposed segmentation approach implements an enhanced version of U-Net++ using dynamic parameter control provided by GWO to segment optic disc and cup regions in retinal fundus images. Through the implementation of GWO the algorithm uses wolf-pack hunting strategies to adjust parameters dynamically which enables it to locate diverse textural patterns inside images. The system uses a CapsNet capsule network for classification because it maintains visual spatial organization to detect glaucoma-related patterns precisely. The developed system secures an evaluation accuracy of 95.1% in segmentation and classification tasks better than typical approaches. The automated system eliminates and enhances clinical diagnostic speed as well as diagnostic precision. The tool stands out because of its supreme detection accuracy and reliability thus making it an essential clinical early-stage glaucoma diagnostic system and a scalable healthcare deployment solution. To develop an advanced automated glaucoma diagnostic system by integrating an optimized U-Net++ segmentation model with a Capsule Network (CapsNet) classifier, enhanced through Grey Wolf Optimization Algorithm (GWOA), for precise segmentation of optic disc and cup regions and accurate glaucoma classification from retinal fundus images. This study proposes a two-phase computer-assisted diagnosis (CAD) framework. In the segmentation phase, an enhanced U-Net++ model, optimized by GWOA, is employed to accurately delineate the optic disc and cup regions in fundus images. The optimization dynamically tunes hyperparameters based on grey wolf hunting behavior for improved segmentation precision. In the classification phase, a CapsNet architecture is used to maintain spatial hierarchies and effectively classify images as glaucomatous or normal based on segmented outputs. The performance of the proposed model was validated using the ORIGA retinal fundus image dataset, and evaluated against conventional approaches. The proposed GWOA-UNet++ and CapsNet framework achieved a segmentation and classification accuracy of 95.1%, outperforming existing benchmark models such as MTA-CS, ResFPN-Net, DAGCN, MRSNet and AGCT. The model demonstrated robustness against image irregularities, including variations in optic disc size and fundus image quality, and showed superior performance across accuracy, sensitivity, specificity, precision, and F1-score metrics. The developed automated glaucoma detection system exhibits enhanced diagnostic accuracy, efficiency, and reliability, offering significant potential for early-stage glaucoma detection and clinical decision support. Future work will involve large-scale multi-ethnic dataset validation, integration with clinical workflows, and deployment as a mobile or cloud-based screening tool.

D<sup>2</sup>-RD-UNet: A dual-stage dual-class framework with connectivity correction for hepatic vessels segmentation.

Cavicchioli M, Moglia A, Garret G, Puglia M, Vacavant A, Pugliese G, Cerveri P

pubmed logopapersJun 27 2025
Accurate segmentation of hepatic and portal veins is critical for preoperative planning in liver surgery, especially for resection and transplantation procedures. Extensive anatomical variability, pathological alterations, and inherent class imbalance between background and vascular structures challenge this task. Current state-of-the-art deep learning approaches often fail to generalize across patient variability or maintain vascular topology, thus limiting their clinical applicability. To overcome these limitations, we propose the D<sup>2</sup>-RD-UNet, a dual-stage, dual-class segmentation framework for hepatic and portal vessels. The D<sup>2</sup>-RD-UNet architecture employs dense and residual connections to improve feature propagation and segmentation accuracy. Our D<sup>2</sup>-RD-UNet integrates advanced data-driven preprocessing, a dual-path architecture for 3D and 4D data, with the latter concatenating computed tomography (CT) scans with four relevant vesselness filters (Sato, Frangi, OOF, and RORPO). The pipeline is completed by the first developed postprocessing multi-class vessel connectivity correction algorithm based on centerlines. Additionally, we introduce the first radius-based branching algorithm to evaluate the model's predictions locally, providing detailed insights into the accuracy of vascular reconstructions at different scales. In order to make up for the scarcity of well-annotated open datasets for hepatic vessels segmentation, we curated AIMS-HPV-385, a large, pathological, multi-class, and validated dataset on 385 CT scans. We trained different configurations of D<sup>2</sup>-RD-UNet and state-of-the-art models on 327 CTs of AIMS-HPV-385. Experimental results on the remaining 58 CTs of AIMS-HPV-385 and on the 20 CTs of 3D-IRCADb-01 demonstrate superior performances of the D<sup>2</sup>-RD-UNet variants over state-of-the-art methods, achieving robust generalization, preserving vascular continuity, and offering a reliable approach for liver vascular reconstructions.

Hybrid segmentation model and CAViaR -based Xception Maxout network for brain tumor detection using MRI images.

Swapna S, Garapati Y

pubmed logopapersJun 27 2025
Brain tumor (BT) is a rapid growth of brain cells. If the BT is not identified and treated in the first stage, it could cause death. Despite several methods and efforts being developed for segmenting and identifying BT, the detection of BT is complicated due to the distinct position of the tumor and its size. To solve such issues, this paper proposes the Conditional Autoregressive Value-at-Risk_Xception Maxout-Network (Caviar_XM-Net) for BT detection utilizing magnetic resonance imaging (MRI) images. The input MRI image gathered from the dataset is denoised using the adaptive bilateral filter (ABF), and tumor region segmentation is done using BFC-MRFNet-RVSeg. Here, the segmentation is done by the Bayesian fuzzy clustering (BFC) and multi-branch residual fusion network (MRF-Net) separately. Subsequently, outputs from both segmentation techniques are combined using the RV coefficient. Image augmentation is performed to boost the quantity of images in the training process. Afterwards, feature extraction is done, where features, like local optimal oriented pattern (LOOP), convolutional neural network (CNN) features, median binary pattern (MBP) with statistical features, and local Gabor XOR pattern (LGXP), are extracted. Lastly, BT detection is carried out by employing Caviar_XM-Net, which is acquired by the assimilation of the Xception model and deep Maxout network (DMN) with the CAViaR approach. Furthermore, the effectiveness of Caviar_XM-Net is examined using the parameters, namely sensitivity, accuracy, specificity, precision, and F1-score, and the corresponding values of 91.59%, 91.36%, 90.83%, 90.99%, and 91.29% are attained. Hence, the Caviar_XM-Net performs better than the traditional methods with high efficiency.

Automation in tibial implant loosening detection using deep-learning segmentation.

Magg C, Ter Wee MA, Buijs GS, Kievit AJ, Schafroth MU, Dobbe JGG, Streekstra GJ, Sánchez CI, Blankevoort L

pubmed logopapersJun 27 2025
Patients with recurrent complaints after total knee arthroplasty may suffer from aseptic implant loosening. Current imaging modalities do not quantify looseness of knee arthroplasty components. A recently developed and validated workflow quantifies the tibial component displacement relative to the bone from CT scans acquired under valgus and varus load. The 3D analysis approach includes segmentation and registration of the tibial component and bone. In the current approach, the semi-automatic segmentation requires user interaction, adding complexity to the analysis. The research question is whether the segmentation step can be fully automated while keeping outcomes indifferent. In this study, different deep-learning (DL) models for fully automatic segmentation are proposed and evaluated. For this, we employ three different datasets for model development (20 cadaveric CT pairs and 10 cadaveric CT scans) and evaluation (72 patient CT pairs). Based on the performance on the development dataset, the final model was selected, and its predictions replaced the semi-automatic segmentation in the current approach. Implant displacement was quantified by the rotation about the screw-axis, maximum total point motion, and mean target registration error. The displacement parameters of the proposed approach showed a statistically significant difference between fixed and loose samples in a cadaver dataset, as well as between asymptomatic and loose samples in a patient dataset, similar to the outcomes of the current approach. The methodological error calculated on a reproducibility dataset showed values that were not statistically significant different between the two approaches. The results of the proposed and current approaches showed excellent reliability for one and three operators on two datasets. The conclusion is that a full automation in knee implant displacement assessment is feasible by utilizing a DL-based segmentation model while maintaining the capability of distinguishing between fixed and loose implants.

Catheter detection and segmentation in X-ray images via multi-task learning.

Xi L, Ma Y, Koland E, Howell S, Rinaldi A, Rhode KS

pubmed logopapersJun 27 2025
Automated detection and segmentation of surgical devices, such as catheters or wires, in X-ray fluoroscopic images have the potential to enhance image guidance in minimally invasive heart surgeries. In this paper, we present a convolutional neural network model that integrates a resnet architecture with multiple prediction heads to achieve real-time, accurate localization of electrodes on catheters and catheter segmentation in an end-to-end deep learning framework. We also propose a multi-task learning strategy in which our model is trained to perform both accurate electrode detection and catheter segmentation simultaneously. A key challenge with this approach is achieving optimal performance for both tasks. To address this, we introduce a novel multi-level dynamic resource prioritization method. This method dynamically adjusts sample and task weights during training to effectively prioritize more challenging tasks, where task difficulty is inversely proportional to performance and evolves throughout the training process. The proposed method has been validated on both public and private datasets for single-task catheter segmentation and multi-task catheter segmentation and detection. The performance of our method is also compared with existing state-of-the-art methods, demonstrating significant improvements, with a mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>J</mi></math> of 64.37/63.97 and with average precision over all IoU thresholds of 84.15/83.13, respectively, for detection and segmentation multi-task on the validation and test sets of the catheter detection and segmentation dataset. Our approach achieves a good balance between accuracy and efficiency, making it well-suited for real-time surgical guidance applications.

3D Auto-segmentation of pancreas cancer and surrounding anatomical structures for surgical planning.

Rhu J, Oh N, Choi GS, Kim JM, Choi SY, Lee JE, Lee J, Jeong WK, Min JH

pubmed logopapersJun 27 2025
This multicenter study aimed to develop a deep learning-based autosegmentation model for pancreatic cancer and surrounding anatomical structures using computed tomography (CT) to enhance surgical planning. We included patients with pancreatic cancer who underwent pancreatic surgery at three tertiary referral hospitals. A hierarchical Swin Transformer V2 model was implemented to segment the pancreas, pancreatic cancers, and peripancreatic structures from preoperative contrast-enhanced CT scans. Data was divided into training and internal validation sets at a 3:1 ratio (from one tertiary institution), with separately prepared external validation set (from two separate institutions). Segmentation performance was quantitatively assessed using the dice similarity coefficient (DSC) and qualitatively evaluated (complete vs partial vs absent). A total of 275 patients (51.6% male, mean age 65.8 ± 9.5 years) were included (176 training group, 59 internal validation group, and 40 external validation group). No significant differences in baseline characteristics were observed between the groups. The model achieved an overall mean DSC of 75.4 ± 6.0 and 75.6 ± 4.8 in the internal and external validation groups, respectively. It showed high accuracy particularly in the pancreas parenchyma (84.8 ± 5.3 and 86.1 ± 4.1) and lower accuracy in pancreatic cancer (57.0 ± 28.7 and 54.5 ± 23.5). The DSC scores for pancreatic cancer tended to increase with larger tumor sizes. Moreover, the qualitative assessments revealed high accuracy in the superior mesenteric artery (complete segmentation, 87.5%-100%), portal and superior mesenteric vein (97.5%-100%), pancreas parenchyma (83.1%-87.5%), but lower accuracy in cancers (62.7%-65.0%). The deep learning-based autosegmentation model for 3D visualization of pancreatic cancer and peripancreatic structures showed robust performance. Further improvement will enhance many promising applications in clinical research.

Causality-Adjusted Data Augmentation for Domain Continual Medical Image Segmentation.

Zhu Z, Dong Q, Luo G, Wang W, Dong S, Wang K, Tian Y, Wang G, Li S

pubmed logopapersJun 27 2025
In domain continual medical image segmentation, distillation-based methods mitigate catastrophic forgetting by continuously reviewing old knowledge. However, these approaches often exhibit biases towards both new and old knowledge simultaneously due to confounding factors, which can undermine segmentation performance. To address these biases, we propose the Causality-Adjusted Data Augmentation (CauAug) framework, introducing a novel causal intervention strategy called the Texture-Domain Adjustment Hybrid-Scheme (TDAHS) alongside two causality-targeted data augmentation approaches: the Cross Kernel Network (CKNet) and the Fourier Transformer Generator (FTGen). (1) TDAHS establishes a domain-continual causal model that accounts for two types of knowledge biases by identifying irrelevant local textures (L) and domain-specific features (D) as confounders. It introduces a hybrid causal intervention that combines traditional confounder elimination with a proposed replacement approach to better adapt to domain shifts, thereby promoting causal segmentation. (2) CKNet eliminates confounder L to reduce biases in new knowledge absorption. It decreases reliance on local textures in input images, forcing the model to focus on relevant anatomical structures and thus improving generalization. (3) FTGen causally intervenes on confounder D by selectively replacing it to alleviate biases that impact old knowledge retention. It restores domain-specific features in images, aiding in the comprehensive distillation of old knowledge. Our experiments show that CauAug significantly mitigates catastrophic forgetting and surpasses existing methods in various medical image segmentation tasks. The implementation code is publicly available at: https://github.com/PerceptionComputingLab/CauAug_DCMIS.

FSDA-DG: Improving cross-domain generalizability of medical image segmentation with few source domain annotations.

Ye Z, Wang K, Lv W, Feng Q, Lu L

pubmed logopapersJun 27 2025
Deep learning-based medical image segmentation faces significant challenges arising from limited labeled data and domain shifts. While prior approaches have primarily addressed these issues independently, their simultaneous occurrence is common in medical imaging. A method that generalizes to unseen domains using only minimal annotations offers significant practical value due to reduced data annotation and development costs. In pursuit of this goal, we propose FSDA-DG, a novel solution to improve cross-domain generalizability of medical image segmentation with few single-source domain annotations. Specifically, our approach introduces semantics-guided semi-supervised data augmentation. This method divides images into global broad regions and semantics-guided local regions, and applies distinct augmentation strategies to enrich data distribution. Within this framework, both labeled and unlabeled data are transformed into extensive domain knowledge while preserving domain-invariant semantic information. Additionally, FSDA-DG employs a multi-decoder U-Net pipeline semi-supervised learning (SSL) network to improve domain-invariant representation learning through consistent prior assumption across multiple perturbations. By integrating data-level and model-level designs, FSDA-DG achieves superior performance compared to state-of-the-art methods in two challenging single domain generalization (SDG) tasks with limited annotations. The code is publicly available at https://github.com/yezanting/FSDA-DG.

Epicardial adipose tissue, myocardial remodelling and adverse outcomes in asymptomatic aortic stenosis: a post hoc analysis of a randomised controlled trial.

Geers J, Manral N, Razipour A, Park C, Tomasino GF, Xing E, Grodecki K, Kwiecinski J, Pawade T, Doris MK, Bing R, White AC, Droogmans S, Cosyns B, Slomka PJ, Newby DE, Dweck MR, Dey D

pubmed logopapersJun 26 2025
Epicardial adipose tissue represents a metabolically active visceral fat depot that is in direct contact with the left ventricular myocardium. While it is associated with coronary artery disease, little is known regarding its role in aortic stenosis. We sought to investigate the association of epicardial adipose tissue with aortic stenosis severity and progression, myocardial remodelling and function, and mortality in asymptomatic patients with aortic stenosis. In a post hoc analysis of 124 patients with asymptomatic mild-to-severe aortic stenosis participating in a prospective clinical trial, baseline epicardial adipose tissue was quantified on CT angiography using fully automated deep learning-enabled software. Aortic stenosis disease severity was assessed at baseline and 1 year. The primary endpoint was all-cause mortality. Neither epicardial adipose tissue volume nor attenuation correlated with aortic stenosis severity or subsequent disease progression as assessed by echocardiography or CT (p>0.05 for all). Epicardial adipose tissue volume correlated with plasma cardiac troponin concentration (r=0.23, p=0.009), left ventricular mass (r=0.46, p<0.001), ejection fraction (r=-0.28, p=0.002), global longitudinal strain (r=0.28, p=0.017), and left atrial volume (r=0.39, p<0.001). During the median follow-up of 48 (IQR 26-73) months, a total of 23 (18%) patients died. In multivariable analysis, both epicardial adipose tissue volume (HR 1.82, 95% CI 1.10 to 3.03; p=0.021) and plasma cardiac troponin concentration (HR 1.47, 95% CI 1.13 to 1.90; p=0.004) were associated with all-cause mortality, after adjustment for age, body mass index and left ventricular ejection fraction. Patients with epicardial adipose tissue volume >90 mm<sup>3</sup> had 3-4 times higher risk of death (adjusted HR 3.74, 95% CI 1.08 to 12.96; p=0.037). Epicardial adipose tissue volume does not associate with aortic stenosis severity or its progression but does correlate with blood and imaging biomarkers of impaired myocardial health. The latter may explain the association of epicardial adipose tissue volume with an increased risk of all-cause mortality in patients with asymptomatic aortic stenosis. gov (NCT02132026).
Page 12 of 50495 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.