Conversion of Mixed-Language Free-Text CT Reports of Pancreatic Cancer to National Comprehensive Cancer Network Structured Reporting Templates by Using GPT-4.

Authors

Kim H,Kim B,Choi MH,Choi JI,Oh SN,Rha SE

Affiliations (3)

  • Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
  • Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. [email protected].
  • Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Abstract

To evaluate the feasibility of generative pre-trained transformer-4 (GPT-4) in generating structured reports (SRs) from mixed-language (English and Korean) narrative-style CT reports for pancreatic ductal adenocarcinoma (PDAC) and to assess its accuracy in categorizing PDCA resectability. This retrospective study included consecutive free-text reports of pancreas-protocol CT for staging PDAC, from two institutions, written in English or Korean from January 2021 to December 2023. Both the GPT-4 Turbo and GPT-4o models were provided prompts along with the free-text reports via an application programming interface and tasked with generating SRs and categorizing tumor resectability according to the National Comprehensive Cancer Network guidelines version 2.2024. Prompts were optimized using the GPT-4 Turbo model and 50 reports from Institution B. The performances of the GPT-4 Turbo and GPT-4o models in the two tasks were evaluated using 115 reports from Institution A. Results were compared with a reference standard that was manually derived by an abdominal radiologist. Each report was consecutively processed three times, with the most frequent response selected as the final output. Error analysis was guided by the decision rationale provided by the models. Of the 115 narrative reports tested, 96 (83.5%) contained both English and Korean. For SR generation, GPT-4 Turbo and GPT-4o demonstrated comparable accuracies (92.3% [1592/1725] and 92.2% [1590/1725], respectively; <i>P</i> = 0.923). In the resectability categorization, GPT-4 Turbo showed higher accuracy than GPT-4o (81.7% [94/115] vs. 67.0% [77/115], respectively; <i>P</i> = 0.002). In the error analysis of GPT-4 Turbo, the SR generation error rate was 7.7% (133/1725 items), which was primarily attributed to inaccurate data extraction (54.1% [72/133]). The resectability categorization error rate was 18.3% (21/115), with the main cause being violation of the resectability criteria (61.9% [13/21]). Both GPT-4 Turbo and GPT-4o demonstrated acceptable accuracy in generating NCCN-based SRs on PDACs from mixed-language narrative reports. However, oversight by human radiologists is essential for determining resectability based on CT findings.

Topics

Pancreatic NeoplasmsTomography, X-Ray ComputedCarcinoma, Pancreatic DuctalJournal Article
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.