Predicting enamel depth distribution of maxillary teeth based on intraoral scanning: A machine learning study.
Authors
Affiliations (4)
Affiliations (4)
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- West China School of Stomatology Sichuan University, Chengdu, China.
- College of Computer Science, Sichuan University, Chengdu, China.
- Department of Opto-Electronic Science and Technology, Sichuan University, Chengdu, China.
Abstract
Measuring enamel depth distribution (EDD) is of great importance for preoperative design of tooth preparations, restorative aesthetic preview and monitoring enamel wear. But, currently there are no non-invasive methods available to efficiently obtain EDD. This study aimed to develop a machine learning (ML) framework to achieve noninvasive and radiation-free EDD predictions with intraoral scanning (IOS) images. Cone-beam computed tomography (CBCT) and IOS images of right maxillary central incisors, canines, and first premolars from 200 volunteers were included and preprocessed with surface parameterization. During the training stage, the EDD ground truths were obtained from CBCT. Five-dimensional features (incisal-gingival position, mesial-distal position, local surface curvature, incisal-gingival stretch, mesial-distal stretch) were extracted on labial enamel surfaces and served as inputs to the ML models. An eXtreme gradient boosting (XGB) model was trained to establish the mapping of features to the enamel depth values. R<sup>2</sup> and mean absolute error (MAE) were utilized to evaluate the training accuracy of XGB model. In prediction stage, the predicted EDDs were compared with the ground truths, and the EDD discrepancies were analyzed using a paired t-test and Frobenius norm. The XGB model achieved superior performance in training with average R<sup>2</sup> and MAE values of 0.926 and 0.080, respectively. Independent validation confirmed its robust EDD prediction ability, showing no significant deviation from ground truths in paired t-test and low prediction errors (Frobenius norm: 12.566-18.312), despite minor noise in IOS-based predictions. This study performed preliminary validation of an IOS-based ML model for high-quality EDD prediction.