Back to all papers

Deep learning-based super-resolution method for projection image compression in radiotherapy.

Authors

Chang Z,Shang J,Fan Y,Huang P,Hu Z,Zhang K,Dai J,Yan H

Affiliations (1)

  • Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Abstract

Cone-beam computed tomography (CBCT) is a three-dimensional (3D) imaging method designed for routine target verification of cancer patients during radiotherapy. The images are reconstructed from a sequence of projection images obtained by the on-board imager attached to a radiotherapy machine. CBCT images are usually stored in a health information system, but the projection images are mostly abandoned due to their massive volume. To store them economically, in this study, a deep learning (DL)-based super-resolution (SR) method for compressing the projection images was investigated. In image compression, low-resolution (LR) images were down-sampled by a factor from the high-resolution (HR) projection images and then encoded to the video file. In image restoration, LR images were decoded from the video file and then up-sampled to HR projection images via the DL network. Three SR DL networks, convolutional neural network (CNN), residual network (ResNet), and generative adversarial network (GAN), were tested along with three video coding-decoding (CODEC) algorithms: Advanced Video Coding (AVC), High Efficiency Video Coding (HEVC), and AOMedia Video 1 (AV1). Based on the two databases of the natural and projection images, the performance of the SR networks and video codecs was evaluated with the compression ratio (CR), peak signal-to-noise ratio (PSNR), video quality metric (VQM), and structural similarity index measure (SSIM). The codec AV1 achieved the highest CR among the three codecs. The CRs of AV1 were 13.91, 42.08, 144.32, and 289.80 for the down-sampling factor (DSF) 0 (non-SR) 2, 4, and 6, respectively. The SR network, ResNet, achieved the best restoration accuracy among the three SR networks. Its PSNRs were 69.08, 41.60, 37.08, and 32.44 dB for the four DSFs, respectively; its VQMs were 0.06%, 3.65%, 6.95%, and 13.03% for the four DSFs, respectively; and its SSIMs were 0.9984, 0.9878, 0.9798, and 0.9518 for the four DSFs, respectively. As the DSF increased, the CR increased proportionally with the modest degradation of the restored images. The application of the SR model can further improve the CR based on the current result achieved by the video encoders. This compression method is not only effective for the two-dimensional (2D) projection images, but also applicable to the 3D images used in radiotherapy.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.