Back to all papers

Machine learning combined with CT-based radiomics predicts the prognosis of oesophageal squamous cell carcinoma.

Authors

Liu M,Lu R,Wang B,Fan J,Wang Y,Zhu J,Luo J

Affiliations (2)

  • Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
  • Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. [email protected].

Abstract

This retrospective study aims to develop a machine learning model integrating preoperative CT radiomics and clinicopathological data to predict 3-year recurrence and recurrence patterns in postoperative oesophageal squamous cell carcinoma. Tumour regions were segmented using 3D-Slicer, and radiomic features were extracted via Python. LASSO regression selected prognostic features for model integration. Clinicopathological data include tumour length, lymph node positivity, differentiation grade, and neurovascular infiltration. Ultimately, a machine learning model was established by combining the screened imaging feature data and clinicopathological data and validating model performance. A nomogram was constructed for survival prediction, and risk stratification was carried out through the prediction results of the machine learning model and the nomogram. Survival analysis was performed for stage-based patient subgroups across risk stratifications to identify adjuvant therapy-benefiting cohorts. Patients were randomly divided into a 7:3 ratio of 368 patients in the training cohorts and 158 patients in the validation cohorts. The LASSO regression screens out 6 recurrence prediction and 9 recurrence pattern prediction features, respectively. Among 526 patients (mean age 63; 427 males), the model achieved high accuracy in predicting recurrence (training cohort AUC: 0.826 [logistic regression]/0.820 [SVM]; validation cohort: 0.830/0.825) and recurrence patterns (training:0.801/0.799; validation:0.806/0.798). Risk stratification based on a machine learning model and nomogram predictions revealed that adjuvant therapy significantly improved disease-free survival in stages II-III patients with predicted recurrence and low survival (HR 0.372, 95% CI: 0.206-0.669; p < 0.001). Machine learning models exhibit excellent performance in predicting recurrence after surgery for squamous oesophageal cancer. Radiomic features of contrast-enhanced CT imaging can predict the prognosis of patients with oesophageal squamous cell carcinoma, which in turn can help clinicians stratify risk and screen out patient populations that could benefit from adjuvant therapy, thereby aiding medical decision-making. There is a lack of prognostic models for oesophageal squamous cell carcinoma in current research. The prognostic prediction model that we have developed has high accuracy by combining radiomics features and clinicopathologic data. This model aids in risk stratification of patients and aids clinical decision-making through predictive outcomes.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.