Surfaced-based detection of focal cortical dysplasia using magnetic resonance fingerprinting and machine learning.
Authors
Affiliations (9)
Affiliations (9)
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA.
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.
- Quantitative Health Science, Cleveland Clinic, Cleveland, Ohio, USA.
- University College London Great Ormond Street Institute for Child Health, London, UK.
- Department of Biomedical Computing, King's College London, London, UK.
- Department of Biomedical Engineering, Yonsei University, Wonju, Korea.
- Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA.
- Neuropathologisches Institut, Universitätsklinikum Erlangen and partner of the European Reference Network EpiCARE, Friedrich-Alexander Universität Erlangen-Nuremberg, Erlangen, Germany.
- Department of Neurosurgery and Biomedical Engineering, Duke University, Durham, North Carolina, USA.
Abstract
This study was undertaken to develop a framework for focal cortical dysplasia (FCD) detection using surface-based morphometric (SBM) analysis and machine learning (ML) applied to three-dimensional (3D) magnetic resonance fingerprinting (MRF). We included 114 subjects (44 patients with medically intractable focal epilepsy and FCD, 70 healthy controls [HCs]). All subjects underwent high-resolution 3-T MRF scans generating T1 and T2 maps. All patients had clinical T1-weighted (T1w) images; 35 also had 3D fluid-attenuated inversion recovery (FLAIR). A 3D region of interest (ROI) was manually created for each lesion. All maps/images and lesion ROIs were registered to T1w images. Surface-based features were extracted following the Multi-center Epilepsy Lesion Detection pipeline. Features were normalized using intrasubject, interhemispheric, and intersubject z-scoring. A two-stage ML approach was applied: a vertexwise neural network classifier for lesional versus normal vertices using T1w/MRF/FLAIR features, followed by a clusterwise Random Undersampling Boosting classifier to suppress false positives (FPs) based on cluster size, prediction probabilities, and feature statistics. Leave-one-out cross-validation was performed at both stages. Using T1w features, sensitivity was 70.4% with 11.6 FP clusters/patient and 4.1 in HCs. Adding MRF reduced FPs to 6.6 clusters/patient and 1.5 in HCs, with 68.2% sensitivity. Combining T1w, MRF, and FLAIR achieved 71.4% sensitivity, with 4.7 FPs/patient and 1.1 in HCs. Detection probabilities were significantly higher for true positive clusters than FPs (p < .001). Type II showed higher detection rates than non-type II. Magnetic resonance imaging (MRI)-positive patients showed higher detection rates and fewer FPs than MRI-negative patients. Seizure-free patients demonstrated higher detection rates than non-seizure-free patients. Subtyping accuracy was 80.8% for non-type II versus type II, and 68.4% for IIa versus IIb, although limited by small sample size. The transmantle sign was present in 61.5% of IIb and 40% of IIa cases. We developed an ML framework for FCD detection integrating SBM with clinical MRI and MRF. Advances include improved FP control and enhanced subtyping; selected model outputs may provide indicators of detection confidence and seizure outcome.