TDSF-Net: Tensor Decomposition-Based Subspace Fusion Network for Multimodal Medical Image Classification.
Authors
Abstract
Data from multimodalities bring complementary information for deep learning-based medical image classification models. However, data fusion methods simply concatenating features or images barely consider the correlations or complementarities among different modalities and easily suffer from exponential growth in dimensions and computational complexity when the modality increases. Consequently, this article proposes a subspace fusion network with tensor decomposition (TD) to heighten multimodal medical image classification. We first introduce a Tucker low-rank TD module to map the high-level dimensional tensor to the low-rank subspace, reducing the redundancy caused by multimodal data and high-dimensional features. Then, a cross-tensor attention mechanism is utilized to fuse features from the subspace into a high-dimension tensor, enhancing the representation ability of extracted features and constructing the interaction information among components in the subspace. Extensive comparison experiments with state-of-the-art (SOTA) methods are conducted on one self-established and three public multimodal medical image datasets, verifying the effectiveness and generalization ability of the proposed method. The code is available at https://github.com/1zhang-yi/TDSFNet.