Back to all papers

Unsupervised High-Order Implicit Neural Representation with Line Attention for Metal Artifact Reduction.

Authors

Chen H,Huang S,He W,Yang G,Zhang H

Abstract

The presence of metallic implants introduces bright and dark streaks that appear in computed tomography (CT) images, degrading image quality and interfering with medical diagnosis. To reduce these artifacts, deep learning approaches have been applied for metal-corrupted restoration, which usually requires a large amount of simulated degraded-clean pairs for training. To achieve metal artifact reduction (MAR) without reference images, implicit neural representation (INR) has emerged and shown capabilities for image restoration in an unsupervised manner. However, existing INR methods for MAR usually treat the spatial coordinates independently and ignore their correlation, resulting in detail loss and artifacts remaining. In this paper, we propose an INR-based unsupervised MAR framework and design a High-order Line Attention Network to capture local contextual and geometric representations from X-rays, which maps the spatial coordinates into discrete linear attenuation coefficients of imaged objects for artifact-free CT image reconstruction. The second-order feature interaction can effectively improve the spectral bias problems and fit low and high-frequency details of real signals well. The proposed line-attention module with linear complexity can establish global relationships among spatial point tokens from sampled rays. To provide more local contextual information, a multiple local adjacent ray sampling strategy is adopted to compose several sub-fan beams with more context as a training batch. With the help of these components, the unsupervised MAR framework can approximate the implicit continuous function to estimate measurements and generate artifact-free CT images. Simulated and real experiments indicated that the proposed approach achieved superior MAR performance compared with other state-of-the-art methods.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.