Back to all papers

MUSCLE: A New Perspective to Multi-scale Fusion for Medical Image Classification based on the Theory of Evidence.

Authors

Qiu J,Cao J,Huang Y,Zhu Z,Wang F,Lu C,Li Y,Zheng Y

Abstract

In the field of medical image analysis, medical image classification is one of the most fundamental and critical tasks. Current researches often rely on the off-the-shelf backbone networks derived from the field of computer vision, hoping to achieve satisfactory classification performance for medical images. However, given the characteristics of medical images, such as scattered distribution and varying sizes of lesions, features extracted with a single scale from the existing backbones often fail to perform accurate medical image classification. To this end, we propose a novel multi-scale learning paradigm, namely MUlti-SCale Learning with trusted Evidences (MUSCLE), which extracts and integrates features from different scales based on the theory of evidence, to generate the more comprehensive feature representation for the medical image classification task. Particularly, the proposed MUSCLE first estimates the uncertainties of features extracted from different scales/stages of the classification backbone as the evidences, and accordingly form the opinions regarding to the feature trustworthiness via a set of evidential deep neural networks. Then, these opinions on different scales of features are ensembled to yield an aggregated opinion, which can be used to adaptively tune the weights of multi-scale features for scatteredly distributed and size-varying lesions, and consequently improve the network capacity for accurate medical image classification. Our MUSCLE paradigm has been evaluated on five publicly available medical image datasets. The experimental results show that the proposed MUSCLE not only improves the accuracy of the original backbone network, but also enhances the reliability and interpretability of model decisions with the trusted evidences (https://github.com/Q4CS/MUSCLE).

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.