ATLASS: An AnaTomicaLly-Aware Self-Supervised Learning Framework for Generalizable Retinal Disease Detection.

Authors

Khan AA,Ahmad KM,Shafiq S,Akram MU,Shao J

Abstract

Medical imaging, particularly retinal fundus photography, plays a crucial role in early disease detection and treatment for various ocular disorders. However, the development of robust diagnostic systems using deep learning remains constrained by the scarcity of expertly annotated data, which is time-consuming and expensive. Self-Supervised Learning (SSL) has emerged as a promising solution, but existing models fail to effectively incorporate critical domain knowledge specific to retinal anatomy. This potentially limits their clinical relevance and diagnostic capability. We address this issue by introducing an anatomically aware SSL framework that strategically integrates domain expertise through specialized masking of vital retinal structures during pretraining. Our approach leverages vessel and optic disc segmentation maps to guide the SSL process, enabling the development of clinically relevant feature representations without extensive labeled data. The framework combines a Vision Transformer with dual-masking strategies and anatomically informed loss functions to preserve structural integrity during feature learning. Comprehensive evaluation across multiple datasets demonstrates our method's competitive performance in diverse retinal disease classification tasks, including diabetic retinopathy grading, glaucoma detection, age-related macular degeneration identification, and multi-disease classification. The evaluation results establish the effectiveness of anatomically-aware SSL in advancing automated retinal disease diagnosis while addressing the fundamental challenge of limited labeled medical data.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.