GAN-based Denoising for Scan Time Reduction and Motion Correction of 18F FP-CIT PET/CT: A Multicenter External Validation Study.

Authors

Han H,Choo K,Jeon TJ,Lee S,Seo S,Kim D,Kim SJ,Lee SH,Yun M

Affiliations (8)

  • Departments of Artificial Intelligence.
  • Computer Science, Yonsei University.
  • Department of Nuclear Medicine, Yonsei University College of Medicine.
  • Department of Nuclear Medicine, Gangnam Severance Hospital.
  • Yonsei University College of Medicine.
  • Department of Nuclear Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Seoul.
  • Department of Nuclear Medicine, National Health Insurance Service Hospital, Gyeonggi-do.
  • Department of Radiology, Division of Nuclear Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea.

Abstract

AI-driven scan time reduction is rapidly transforming medical imaging with benefits such as improved patient comfort and enhanced efficiency. A Dual Contrastive Learning Generative Adversarial Network (DCLGAN) was developed to predict full-time PET scans from shorter, noisier scans, improving challenges in imaging patients with movement disorders. 18F FP-CIT PET/CT data from 391 patients with suspected Parkinsonism were used [250 training/validation, 141 testing (hospital A)]. Ground truth (GT) images were reconstructed from 15-minute scans, while denoised images (DIs) were generated from 1-, 3-, 5-, and 10-minute scans. Image quality was assessed using normalized root mean square error (NRMSE), peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), visual analysis, and clinical metrics like BPND and ISR for diagnosis of non-neurodegenerative Parkinson disease (NPD), idiopathic PD (IPD), and atypical PD (APD). External validation used data from 2 hospitals with different scanners (hospital B: 1-, 3-, 5-, and 10-min; hospital C: 1-, 3-, and 5-min). In addition, motion artifact reduction was evaluated using the Dice similarity coefficient (DSC). In hospital A, NRMSE, PSNR, and SSIM values improved with scan duration, with the 5-minute DIs achieving optimal quality (NRMSE 0.008, PSNR 42.13, SSIM 0.98). Visual analysis rated DIs from scans ≥3 minutes as adequate or higher. The mean BPND differences (95% CI) for each DIs were 0.19 (-0.01, 0.40), 0.11 (-0.02, 0.24), 0.08 (-0.03, 0.18), and 0.01 (-0.06, 0.07), with the CIs significantly decreasing. ISRs with the highest effect sizes for differentiating NPD, IPD, and APD (PP/AP, PP/VS, PC/VP) remained stable post-denoising. External validation showed 10-minute DIs (hospital B) and 1-minute DIs (hospital C) reached benchmarks of hospital A's image quality metrics, with similar trends in visual analysis and BPND CIs. Furthermore, motion artifact correction in 9 patients yielded DSC improvements from 0.89 to 0.95 in striatal regions. The DL-model is capable of generating high-quality 18F FP-CIT PET images from shorter scans to enhance patient comfort, minimize motion artifacts, and maintain diagnostic precision. Furthermore, our study plays an important role in providing insights into how imaging quality assessment metrics can be used to determine the appropriate scan duration for different scanners with varying sensitivities.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.