Detection of Dental Restorations and Prosthesis Devices in Panoramic Dental X-ray Using Fast Region-Based Convolutional Neural Network.
Authors
Affiliations (5)
Affiliations (5)
- Synbrain S.r.l., via Bernardo Rucellai 10, Milan, Italy.
- Centro Diagnostico Italiano S.p.A., via Saint Bon 20, Milan, Italy.
- ASST Fatebenefratelli Sacco, Piazza Principessa Clotilde 3, Milan, Italy.
- Università degli Studi di Milano, via Festa del Perdono 7, Milan, Italy.
- Bracco Imaging S.p.A, via Egidio Folli 50, Milan, Italy.
Abstract
This study aimed to develop and evaluate an artificial intelligence (AI) framework for detecting dental restorations and prosthesis devices on panoramic radiographs (PRs). Detecting these elements is essential for enhancing automated reporting, improving the accuracy of dental assessments, and reducing manual examination time. A Fast Region-Based Convolutional Neural Network (Fast R-CNN) was trained using 186 PRs for the training set and 42 for validation. The model's performance was assessed on an external test dataset of 1133 PRs. Seven dental restorations and prosthesis devices were targeted: appliance, bridge, endodontic filling, crown filling, implant, retainer, and single crown. Precision, recall, and F1-score were calculated for each element to measure detection accuracy. The AI framework achieved high performance across all categories, with precision, recall, and F1-scores as follows: appliance (0.79, 0.96, 0.87), bridge (0.91, 0.86, 0.89), endodontic filling (0.98, 0.98, 0.98), crown filling (0.95, 0.95, 0.95), implant (0.99, 0.97, 0.98), retainer (0.98, 0.98, 0.98), and single crown (0.94, 0.96, 0.95). The system processes one panoramic image in under 30 seconds. The AI framework demonstrated high recall and efficiency in detecting dental prosthesis and other dental restorations on PRs. Its application could significantly streamline dental diagnostics and automated reporting, enhancing both the speed and accuracy of dental assessments. This study highlights the potential of AI in automating the detection of multiple dental restorations and prosthesis on PRs, offering a valuable tool for dental professionals to improve diagnostic workflows.