A deep learning model for early diagnosis of alzheimer's disease combined with 3D CNN and video Swin transformer.

Authors

Zhou J,Wei Y,Li X,Zhou W,Tao R,Hua Y,Liu H

Affiliations (2)

  • School of Information and Software Engineering, East China Jiaotong University, Nanchang, 330013, China.
  • School of Information and Software Engineering, East China Jiaotong University, Nanchang, 330013, China. [email protected].

Abstract

Alzheimer's disease (AD) constitutes a neurodegenerative disorder predominantly observed in the geriatric population. If AD can be diagnosed early, both in terms of prevention and treatment, it is very beneficial to patients. Therefore, our team proposed a novel deep learning model named 3D-CNN-VSwinFormer. The model consists of two components: the first part is a 3D CNN equipped with a 3D Convolutional Block Attention Module (3D CBAM) module, and the second part involves a fine-tuned Video Swin Transformer. Our investigation extracts features from subject-level 3D Magnetic resonance imaging (MRI) data, retaining only a single 3D MRI image per participant. This method circumvents data leakage and addresses the issue of 2D slices failing to capture global spatial information. We utilized the ADNI dataset to validate our proposed model. In differentiating between AD patients and cognitively normal (CN) individuals, we achieved accuracy and AUC values of 92.92% and 0.9660, respectively. Compared to other studies on AD and CN recognition, our model yielded superior results, enhancing the efficiency of AD diagnosis.

Topics

Alzheimer DiseaseDeep LearningImaging, Three-DimensionalJournal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.