Design and Optimization of an automatic deep learning-based cerebral reperfusion scoring (TICI) using thrombus localization.
Authors
Affiliations (4)
Affiliations (4)
- Neuroradiology Department, Brest University Hospital, Brest, France. Electronic address: [email protected].
- Neuroradiology Department, Brest University Hospital, Brest, France.
- Research and Development Department, Intradys, Brest, France.
- Radiology, Mayo Clinic, Rochester, Minnesota, USA; LaTIM INSERM UMR1101, University Hospital of Brest, Brest, France.
Abstract
The Thrombolysis in Cerebral Infarction (TICI) scale is widely used to assess angiographic outcomes of mechanical thrombectomy despite significant variability. Our objective was to create and optimize an artificial intelligence (AI)-based classification model for digital subtraction angiography (DSA) TICI scoring. Using a monocentric DSA dataset of thrombectomies, and a platform for medical image analysis, independent readers labeled each series according to TICI score and marked each thrombus. A convolutional neural network (CNN) classification model was created to classify TICI scores, into 2 groups (TICI 0,1 or 2a versus TICI 2b, 2c or 3) and 3 groups (TICI 0,1 or 2a versus TICI 2b versus TICI 2c or 3). The algorithm was first tested alone, and then thrombi positions were introduced to the algorithm by manual placement firstly, then after using a thrombus detection module. A total of 422 patients were enrolled in the study. 2492 thrombi were annotated on the TICI-labeled series. The model trained on a total of 1609 DSA series. The classification model into two classes had a specificity of 0.97 ±0.01 and a sensibility of 0.86 ±0.01. The 3-class models showed insufficient performance, even when combined with the true thrombi positions, with, respectively, F1 scores for TICI 2b classification of 0.50 and 0.55 ±0.07. The automatic thrombus detection module did not enhance the performance of the 3-class model, with a F1 score for the TICI 2b class measured at 0.50 ±0.07. The AI model provided a reproducible 2-class (TICI 0,1 or 2a versus 2b, 2c or 3) classification according to TICI scale. Its performance in distinguishing three classes (TICI 0,1 or 2a versus 2b versus 2c or 3) remains insufficient for clinical practice. Automatic thrombus detection did not improve the model's performance.