Lightweight Transfer Learning Models for Multi-Class Brain Tumor Classification: Glioma, Meningioma, Pituitary Tumors, and No Tumor MRI Screening.
Authors
Affiliations (4)
Affiliations (4)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel. [email protected].
- Rambam Health Care Campus, Haifa, Israel. [email protected].
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel.
- Maccabi Healthcare Services, Tel Aviv, Israel.
Abstract
Glioma, pituitary tumors, and meningiomas constitute the major types of primary brain tumors. The challenge in achieving a definitive diagnosis stem from the brain's complex structure, limited accessibility for precise imaging, and the resemblance between different types of tumors. An alternative and promising solution is the application of artificial intelligence (AI), specifically through deep learning models. We developed multiple lightweight deep learning models ResNet-18 (both pretrained on ImageNet and trained from scratch), ResNet-34, ResNet-50, and a custom CNN to classify glioma, meningioma, pituitary tumor, and no tumor MRI scans. A dataset of 7023 images was employed, split into 5712 for training and 1311 for validation. Each model was evaluated via accuracy, area under the curve (AUC), sensitivity, specificity, and confusion matrices. We compared our models to SOTA methods such as SAlexNet and TumorGANet, highlighting computational efficiency and classification performance. ResNet pretrained achieved 98.5-99.2% accuracy and near-perfect validation metrics, with an overall AUC of 1.0 and average sensitivity and specificity both exceeding 97% across the four classes. In comparison, ResNet-18 trained from scratch and the custom CNN achieved 91.99% and 87.03% accuracy, respectively, with AUCs ranging from 0.94 to 1.00. Error analysis revealed moderate misclassification of meningiomas as gliomas in non-pretrained models. Learning rate optimization facilitated stable convergence, and loss metrics indicated effective generalization with minimal overfitting. Our findings confirm that a moderately sized, transfer-learned network (ResNet-18) can deliver high diagnostic accuracy and robust performance for four-class brain tumor classification. This approach aligns with the goal of providing efficient, accurate, and easily deployable AI solutions, particularly for smaller clinical centers with limited computational resources. Future studies should incorporate multi-sequence MRI and extended patient cohorts to further validate these promising results.