Back to all papers

Brain age as an accurate biomarker of preclinical cognitive decline: evidence from a 12-year longitudinal study.

Authors

Elkana O,Beheshti I

Affiliations (2)

  • Behavioral Sciences, Academic College of Tel Aviv-Yaffo, Tel Aviv, Israel. [email protected].
  • Department Electrical Engineering Technology, Red River College Polytechnic, Winnipeg, MB, Canada. [email protected].

Abstract

Cognitive decline in older adults, particularly during the preclinical stages of Alzheimer's disease (AD), presents a critical opportunity for early detection and intervention. While T1-weighted MRI is widely used in AD research, its capacity to identify early vulnerability and monitor longitudinal progression remains incompletely characterized. We analyzed longitudinal T1-weighted MRI data from 224 cognitively unimpaired older adults followed for up to 12 years. Participants were stratified by clinical outcome into converters to mild cognitive impairment (HC-converters, n = 112) and stable controls (HC-stable, n = 112). Groups were matched at baseline for age (mean ~ 74-75 years), education (~ 16.4 years), and cognitive scores (MMSE ≈ 29; CDR-SB ≈ 0.04). Four MRI-derived biomarkers were examined: brain-predicted age difference (brain-PAD), mean cortical thickness, AD-cortical signature, and hippocampal volume. Brain-PAD showed the strongest baseline association with future conversion (β = 1.25, t = 3.52, p = 0.0009) and highest classification accuracy (AUC = 0.66; sensitivity = 62%, and specificity = 67%). Longitudinal mixed-effects models focusing on the group × time interaction revealed a significant positive slope in brain-PAD for converters (β = 0.0079, p = 0.003) and a non-significant trend in stable controls (β = 0.0047, p = 0.075), indicating incipient divergence in brain aging trajectories during the preclinical window. Hippocampal volume and AD-cortical signature declined similarly in both groups. The mean cortical thickness had limited discriminative or dynamic utility. These findings support brain-PAD, derived from routine T1-weighted MRI using machine learning, as a sensitive, performance-independent biomarker for early risk stratification and monitoring of cognitive aging trajectories.

Topics

Cognitive DysfunctionAgingBrainJournal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.