Concurrent AI assistance with LI-RADS classification for contrast enhanced MRI of focal hepatic nodules: a multi-reader, multi-case study.
Authors
Affiliations (3)
Affiliations (3)
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue No.1838, 510515, Guangzhou, China.
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue No.1838, 510515, Guangzhou, China. [email protected].
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue No.1838, 510515, Guangzhou, China. [email protected].
Abstract
The Liver Imaging Reporting and Data System (LI-RADS) assessment is subject to inter-reader variability. The present study aimed to evaluate the impact of an artificial intelligence (AI) system on the accuracy and inter-reader agreement of LI-RADS classification based on contrast-enhanced magnetic resonance imaging among radiologists with varying experience levels. This single-center, multi-reader, multi-case retrospective study included 120 patients with 200 focal liver lesions who underwent abdominal contrast-enhanced magnetic resonance imaging examinations between June 2023 and May 2024. Five radiologists with different experience levels independently assessed LI-RADS classification and imaging features with and without AI assistance. The reference standard was established by consensus between two expert radiologists. Accuracy was used to measure the performance of AI systems and radiologists. Kappa or intraclass correlation coefficient was utilized to estimate inter-reader agreement. The LI-RADS categories were as follows: 33.5% of LR-3 (67/200), 29.0% of LR-4 (58/200), 33.5% of LR-5 (67/200), and 4.0% of LR-M (8/200) cases. The AI system significantly improved the overall accuracy of LI-RADS classification from 69.9 to 80.1% (p < 0.001), with the most notable improvement among junior radiologists from 65.7 to 79.7% (p < 0.001). Inter-reader agreement for LI-RADS classification was significantly higher with AI assistance compared to that without (weighted Cohen's kappa, 0.655 vs. 0.812, p < 0.001). The AI system also enhanced the accuracy and inter-reader agreement for imaging features, including non-rim arterial phase hyperenhancement, non-peripheral washout, and restricted diffusion. Additionally, inter-reader agreement for lesion size measurements improved, with intraclass correlation coefficient changing from 0.857 to 0.951 (p < 0.001). The AI system significantly increases accuracy and inter-reader agreement of LI-RADS 3/4/5/M classification, particularly benefiting junior radiologists.