Radiation Dose Reduction and Image Quality Improvement of UHR CT of the Neck by Novel Deep-learning Image Reconstruction.
Authors
Affiliations (4)
Affiliations (4)
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Johannes Gutenberg University, Rhabanusstr. 3/Tower A, 55118, Mainz, Germany.
- Department of oral and maxillofacial surgery, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckst. 1, 55131, Mainz, Germany.
- Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany. [email protected].
Abstract
We evaluated a dedicated dose-reduced UHR-CT for head and neck imaging, combined with a novel deep learning reconstruction algorithm to assess its impact on image quality and radiation exposure. Retrospective analysis of ninety-eight consecutive patients examined using a new body weight-adapted protocol. Images were reconstructed using adaptive iterative dose reduction and advanced intelligent Clear-IQ engine with an already established (DL-1) and a newly implemented reconstruction algorithm (DL-2). Additional thirty patients were scanned without body-weight-adapted dose reduction (DL-1-SD). Three readers evaluated subjective image quality regarding image quality and assessment of several anatomic regions. For objective image quality, signal-to-noise ratio and contrast-to-noise ratio were calculated for temporalis and masseteric muscle and the floor of the mouth. Radiation dose was evaluated by comparing the computed tomography dose index (CTDIvol) values. Deep learning-based reconstruction algorithms significantly improved subjective image quality (diagnostic acceptability: DL‑1 vs AIDR OR of 25.16 [6.30;38.85], p < 0.001 and DL‑2 vs AIDR 720.15 [410.14;> 999.99], p < 0.001). Although higher doses (DL-1-SD) resulted in significantly enhanced image quality, DL‑2 demonstrated significant superiority over all other techniques across all defined parameters (p < 0.001). Similar results were demonstrated for objective image quality, e.g. image noise (DL‑1 vs AIDR OR of 19.0 [11.56;31.24], p < 0.001 and DL‑2 vs AIDR > 999.9 [825.81;> 999.99], p < 0.001). Using weight-adapted kV reduction, very low radiation doses could be achieved (CTDIvol: 7.4 ± 4.2 mGy). AI-based reconstruction algorithms in ultra-high resolution head and neck imaging provide excellent image quality while achieving very low radiation exposure.