Open-source Sybil AI detects lung cancer risk effectively in Asian heavy smokers on low-dose CT.
Key Details
- 1Sybil is an open-source deep learning model that uses low-dose CT (LDCT) to predict lung cancer risk.
- 2Study included 18,057 Asian patients (with at least one follow-up scan) from 2004–2021.
- 3Sybil achieved overall AUC of 0.91 (1-year) and 0.74 (6-year); heavy smoking subgroup AUCs were 0.94 (1-year, visible cancers) and 0.7 (6-year, future cancers).
- 4Performance was weaker (AUC 0.56 for 6-year, future cancers) in never/light-smoking subgroup.
- 5The model may help optimize follow-up intervals in lung cancer screening programs.
- 6External validation is needed before widespread adoption.
Why It Matters
This research demonstrates promising performance of an AI tool for individualized lung cancer risk estimation using routine LDCT in underrepresented Asian populations, potentially supporting more tailored screening protocols. Reliable, open-source risk assessment models like Sybil may improve early detection and resource allocation in lung cancer care.

Source
AuntMinnie
Related News

•Radiology Business
Harrison.ai Receives FDA Breakthrough Status for Imaging AI Device
Harrison.ai has been awarded three FDA breakthrough device designations for its imaging AI solutions, including a tool for obstructive hydrocephalus triage.

•AuntMinnie
Head-to-Head Study Evaluates AI Accuracy in Fracture Detection on X-Ray
A prospective study compared three commercial AI tools for fracture detection on x-ray, showing moderate-to-high accuracy for simple cases but weaker performance in complex scenarios.

•AuntMinnie
AI Boosts Agreement in CAD-RADS Classification on Cardiac CT
Deep learning AI improves interreader agreement in CAD-RADS assessments on coronary CT angiography.