Open-source Sybil AI detects lung cancer risk effectively in Asian heavy smokers on low-dose CT.
Key Details
- 1Sybil is an open-source deep learning model that uses low-dose CT (LDCT) to predict lung cancer risk.
- 2Study included 18,057 Asian patients (with at least one follow-up scan) from 2004–2021.
- 3Sybil achieved overall AUC of 0.91 (1-year) and 0.74 (6-year); heavy smoking subgroup AUCs were 0.94 (1-year, visible cancers) and 0.7 (6-year, future cancers).
- 4Performance was weaker (AUC 0.56 for 6-year, future cancers) in never/light-smoking subgroup.
- 5The model may help optimize follow-up intervals in lung cancer screening programs.
- 6External validation is needed before widespread adoption.
Why It Matters
This research demonstrates promising performance of an AI tool for individualized lung cancer risk estimation using routine LDCT in underrepresented Asian populations, potentially supporting more tailored screening protocols. Reliable, open-source risk assessment models like Sybil may improve early detection and resource allocation in lung cancer care.

Source
AuntMinnie
Related News

•AuntMinnie
Deep Learning Improves Dual-Energy CT Venography for Liver Transplants
Deep-learning image reconstruction significantly enhances image quality in dual-energy CT portal venography, aiding liver transplant planning.

•AuntMinnie
AI Enhancement Dramatically Improves Quality of Suboptimal Chest CTs
AI-powered image enhancement significantly boosts the diagnostic quality of suboptimal chest CT and CTPA studies.

•AuntMinnie
AI Enables Safe 75% Gadolinium Reduction in Breast MRI Without Losing Sensitivity
AI-enhanced breast MRI with a 75% reduced gadolinium dose maintained diagnostic sensitivity comparable to full-dose protocols.