A new study validates the Sybil AI model for predicting lung cancer risk using low-dose CT in a predominantly Black cohort at an urban safety-net hospital.
Key Details
- 1Study presented at the 2025 IASLC World Conference on Lung Cancer.
- 2Validation conducted at UI Health on 2,092 baseline low-dose CT scans from 2014-2024.
- 3Cohort primarily Non-Hispanic Black (62%), with 13% Hispanic and 4% Asian.
- 4Sybil demonstrated strong Area Under the Curve (AUC): 0.94 (1 yr), 0.90 (2 yr), 0.86 (3 yr), 0.85 (4 yr), 0.80 (5 yr), 0.79 (6 yr).
- 5Results remained strong after restricting to Black participants and excluding recent diagnoses.
- 6The Sybil Implementation Consortium will advance to prospective clinical trials for clinical workflow integration.
Why It Matters

Source
EurekAlert
Related News

AI Reveals Key Health System Levers for Cancer Outcomes Globally
AI-based analysis identifies the most impactful policy and resource factors for improving cancer survival across 185 countries.

EU SHASAI Project Aims to Fortify AI Security Across Sectors
The SHASAI project will enhance AI system security through lifecycle-spanning methods tested in real-world scenarios, including healthcare.

AI-Driven CT Tool Predicts Cancer Spread in Oropharyngeal Tumors
Researchers have created an AI tool that uses CT imaging to predict the spread risk of oropharyngeal cancer, offering improved treatment stratification.