A new study validates the Sybil AI model for predicting lung cancer risk using low-dose CT in a predominantly Black cohort at an urban safety-net hospital.
Key Details
- 1Study presented at the 2025 IASLC World Conference on Lung Cancer.
- 2Validation conducted at UI Health on 2,092 baseline low-dose CT scans from 2014-2024.
- 3Cohort primarily Non-Hispanic Black (62%), with 13% Hispanic and 4% Asian.
- 4Sybil demonstrated strong Area Under the Curve (AUC): 0.94 (1 yr), 0.90 (2 yr), 0.86 (3 yr), 0.85 (4 yr), 0.80 (5 yr), 0.79 (6 yr).
- 5Results remained strong after restricting to Black participants and excluding recent diagnoses.
- 6The Sybil Implementation Consortium will advance to prospective clinical trials for clinical workflow integration.
Why It Matters
Demonstrating reliable AI performance in racially and socioeconomically diverse settings is crucial for equitable lung cancer screening. This validation may facilitate broader adoption and help address longstanding disparities in lung cancer outcomes.

Source
EurekAlert
Related News

•EurekAlert
Imaging Reveals Skull Changes and Immune Impact in Glioblastoma
Advanced imaging uncovers that glioblastoma affects the skull and immune system, not just the brain.

•EurekAlert
AI-Based CT Analysis Predicts Outcomes in Fibrotic Lung Disease
AI analysis of one-year CT changes predicts disease progression and survival in fibrotic interstitial lung disease.

•EurekAlert
AI-Enhanced CT Model Improves HCC Risk Prediction in Cirrhosis
Combining CT-based radiomics and deep learning features with clinical data enhances prediction of hepatocellular carcinoma risk in cirrhosis patients.