
Certain breast cancer types, like luminal cancer and those in dense breasts, are more likely to be missed by AI in mammography screening.
Key Details
- 1South Korean researchers reviewed breast images from nearly 1,100 women screened between 2014 and 2020.
- 2AI tools were found to miss cancers with features such as luminal subtype, dense breast tissue, and lesions outside the mammary zone.
- 3The study was published in RSNA's journal Radiology.
- 4Experts urge careful assessment of cases at higher risk of AI error.
Why It Matters

Source
Radiology Business
Related News

Toronto Study: LLMs Must Cite Sources for Radiology Decision Support
University of Toronto researchers found that large language models (LLMs) such as DeepSeek V3 and GPT-4o offer promising support for radiology decision-making in pancreatic cancer when their recommendations cite guideline sources.

AI Model Using Mammograms Enhances Five-Year Breast Cancer Risk Assessment
A new image-only AI model more accurately predicts five-year breast cancer risk than breast density alone, according to multinational research presented at RSNA 2025.

AI Model Uses CT Scans to Reveal Biomarker for Chronic Stress
Researchers developed an AI model to measure chronic stress using adrenal gland volume on routine CT scans.