
Clinical staff outperform ChatGPT AI at emergency department triage, but AI shows promise as a support tool for urgent cases.
Key Details
- 1Study compared six doctors, 44 nurses, and ChatGPT 3.5 on triaging 110 clinical cases using the Manchester Triage System.
- 2Doctors achieved 70.6% accuracy, nurses 65.5%, and AI 50.4%; AI had lower sensitivity for urgent cases (58.3% vs. nurses 73.8%, doctors 83%).
- 3AI outperformed nurses in the most urgent triage category for accuracy (27.3% vs. 9.3%) and specificity (27.8% vs. 8.3%).
- 4AI tended to over-triage, assigning higher urgency more often than staff.
- 5Authors advocate for AI as an adjunct to, not replacement for, clinical judgement.
- 6Study limitations include small sample size, single center, and non-real-world AI setting.
Why It Matters

Source
EurekAlert
Related News

Deep Learning AI Outperforms Clinic Prognostics for Colorectal Cancer Recurrence
A new deep learning model using histopathology images identifies recurrence risk in stage II colorectal cancer more effectively than standard clinical predictors.

AI Reveals Key Health System Levers for Cancer Outcomes Globally
AI-based analysis identifies the most impactful policy and resource factors for improving cancer survival across 185 countries.

Deep Learning Boosts ICD-11 Coding Accuracy for Chinese EMRs
Researchers developed a deep learning model achieving high accuracy in automatic ICD-11 coding of Chinese electronic medical records.