
AI decision support improves radiologists' breast cancer detection accuracy when interpreting screening mammograms, mainly by enhancing focus on suspicious regions.
Key Details
- 1Peer-reviewed study published in Radiology journal (RSNA).
- 212 radiologists read 150 screening mammograms (75 with cancer, 75 without).
- 3AI support increased detection accuracy without affecting average reading time or sensitivity/specificity.
- 4Eye tracking showed radiologists spent more time on actual lesions when aided by AI.
- 5AI region scores influenced radiologist attention—higher scores led to more careful examination.
- 6Ongoing research is exploring the best timing and usage of AI decision support.
Why It Matters

Source
EurekAlert
Related News

Deep Learning AI Outperforms Clinic Prognostics for Colorectal Cancer Recurrence
A new deep learning model using histopathology images identifies recurrence risk in stage II colorectal cancer more effectively than standard clinical predictors.

AI Reveals Key Health System Levers for Cancer Outcomes Globally
AI-based analysis identifies the most impactful policy and resource factors for improving cancer survival across 185 countries.

Dual-Branch Graph Attention Network Predicts ECT Success in Teen Depression
Researchers developed a dual-branch graph attention network that uses structural and functional MRI data to accurately predict individual responses to electroconvulsive therapy in adolescents with major depressive disorder.