
International study highlights demographic biases in AI models diagnosing skin diseases from images.
Key Details
- 1Researchers evaluated ChatGPT-4 and LLaVA on 10,000 dermatoscopic images of skin diseases.
- 2Study assessed diagnostic accuracy and fairness regarding sex and age groups.
- 3ChatGPT-4 showed better demographic fairness than LLaVA, which had marked sex-based biases.
- 4Both AI models outperformed traditional deep learning approaches overall.
- 5Calls made for considering demographic fairness before clinical deployment of AI in healthcare.
- 6Further research planned to evaluate impact of skin tone and other demographic factors.
Why It Matters

Source
EurekAlert
Related News

AI Model Improves Prediction of Knee Osteoarthritis Progression Using MRI and Biomarkers
A new AI-assisted model that combines MRI, biochemical, and clinical data improves predictions of worsening knee osteoarthritis.

AI Model Predicts Multiple Genetic Markers from Colorectal Pathology Slides
Researchers developed and validated an AI model that simultaneously detects multiple genetic markers in colorectal cancer tissue slides.

Photonic Chip Enables Versatile Neural Networks for Imaging and Speech AI
Chinese scientists have developed a reconfigurable integrated photonic chip capable of running diverse neural networks, including those for image and speech processing, with high efficiency.