
International study highlights demographic biases in AI models diagnosing skin diseases from images.
Key Details
- 1Researchers evaluated ChatGPT-4 and LLaVA on 10,000 dermatoscopic images of skin diseases.
- 2Study assessed diagnostic accuracy and fairness regarding sex and age groups.
- 3ChatGPT-4 showed better demographic fairness than LLaVA, which had marked sex-based biases.
- 4Both AI models outperformed traditional deep learning approaches overall.
- 5Calls made for considering demographic fairness before clinical deployment of AI in healthcare.
- 6Further research planned to evaluate impact of skin tone and other demographic factors.
Why It Matters
Addressing bias in AI diagnostic tools is essential to ensure equitable healthcare outcomes. This study provides critical insights and grounds for improvement in AI model development for medical imaging.

Source
EurekAlert
Related News

•EurekAlert
Chinese Researchers Unveil Photonic Chip for Ultra-Fast Image Processing
A new photonic chip achieves image processing at 25 million frames per second with high energy efficiency, promising major advances in real-time imaging and AI applications.

•EurekAlert
AI Model Predicts Growth Spurts from Pediatric Neck X-rays for Orthodontics
Korean researchers developed an AI system (ARNet-v2) that predicts children's growth spurts from neck X-rays to enhance orthodontic treatment planning.

•EurekAlert
Imaging Reveals Skull Changes and Immune Impact in Glioblastoma
Advanced imaging uncovers that glioblastoma affects the skull and immune system, not just the brain.