
International study highlights demographic biases in AI models diagnosing skin diseases from images.
Key Details
- 1Researchers evaluated ChatGPT-4 and LLaVA on 10,000 dermatoscopic images of skin diseases.
- 2Study assessed diagnostic accuracy and fairness regarding sex and age groups.
- 3ChatGPT-4 showed better demographic fairness than LLaVA, which had marked sex-based biases.
- 4Both AI models outperformed traditional deep learning approaches overall.
- 5Calls made for considering demographic fairness before clinical deployment of AI in healthcare.
- 6Further research planned to evaluate impact of skin tone and other demographic factors.
Why It Matters
Addressing bias in AI diagnostic tools is essential to ensure equitable healthcare outcomes. This study provides critical insights and grounds for improvement in AI model development for medical imaging.

Source
EurekAlert
Related News

•EurekAlert
Major Study Reveals Barriers to Implementing AI Chest Diagnostics in NHS Hospitals
A UCL-led study identifies significant challenges in deploying AI tools for chest diagnostics across NHS hospitals in England.

•EurekAlert
AI Model Enhances Prediction of Infection Risks from Oral Mucositis in Stem Cell Transplant Patients
Researchers developed an explainable AI tool that accurately predicts infection risks related to oral mucositis in hematopoietic stem cell transplant patients.

•EurekAlert
AI-Enabled Hydrogel Patch Provides Long-Term High-Fidelity EEG and Attention Monitoring
Researchers unveil a reusable hydrogel patch with machine learning capabilities for high-fidelity EEG recording and attention assessment.