Algorithms from the 2023 RSNA Screening Mammography AI Challenge demonstrated strong performance, with leading models achieving high sensitivity and specificity in breast cancer detection.
Key Details
- 1The 2023 RSNA AI Challenge evaluated 1,537 algorithms on an independent dataset of 5,415 women from the US and Australia.
- 2Median recall rate of all algorithms was 1.7%, with the top-performing algorithm at 1.5%.
- 3Top algorithm sensitivity was 48.6% vs. median of 27.6%; specificity was 99.5% vs. 98.7% median.
- 4Ensemble models of the top 3 and top 10 algorithms achieved sensitivities of 60.7% and 67.8%, with corresponding recall rates of 2.4% and 3.5%.
- 5Sensitivity was higher in the Australian evaluation set (68.1%) than the US set (52.0%).
- 6The top models had higher sensitivity for invasive (68.0%) over noninvasive cancers (43.8%).
Why It Matters

Source
AuntMinnie
Related News

Women's Uncertainty About AI in Breast Imaging May Limit Acceptance
Many women remain unclear about the role of AI in breast imaging, creating hesitation toward its adoption.

Stanford Team Introduces Real-Time AI Safety Monitoring for Radiology
Stanford researchers introduced an ensemble monitoring model to provide real-time confidence assessments for FDA-cleared radiology AI tools.

Head-to-Head Study Evaluates AI Accuracy in Fracture Detection on X-Ray
A prospective study compared three commercial AI tools for fracture detection on x-ray, showing moderate-to-high accuracy for simple cases but weaker performance in complex scenarios.