Algorithms from the 2023 RSNA Screening Mammography AI Challenge demonstrated strong performance, with leading models achieving high sensitivity and specificity in breast cancer detection.
Key Details
- 1The 2023 RSNA AI Challenge evaluated 1,537 algorithms on an independent dataset of 5,415 women from the US and Australia.
- 2Median recall rate of all algorithms was 1.7%, with the top-performing algorithm at 1.5%.
- 3Top algorithm sensitivity was 48.6% vs. median of 27.6%; specificity was 99.5% vs. 98.7% median.
- 4Ensemble models of the top 3 and top 10 algorithms achieved sensitivities of 60.7% and 67.8%, with corresponding recall rates of 2.4% and 3.5%.
- 5Sensitivity was higher in the Australian evaluation set (68.1%) than the US set (52.0%).
- 6The top models had higher sensitivity for invasive (68.0%) over noninvasive cancers (43.8%).
Why It Matters

Source
AuntMinnie
Related News

Literature Review Highlights Gaps in Economic Evaluation of Healthcare AI
A Finnish review finds significant gaps in economic evaluation reporting of AI technologies in Western healthcare.

Economic Evaluations of AI in Healthcare Face Major Gaps
A Finnish review finds significant deficiencies in how studies evaluate and report the economic impact of healthcare AI.

AI Platform Triples Functional Independence in UK Stroke Patients
AI brain imaging software deployed by NHS has significantly improved stroke outcomes and functional independence rates in England.