Open-source AI tools can perform as well as costly commercial systems in reading and structuring radiology reports without compromising patient privacy.
Key Details
- 1University of Colorado study evaluated free, open-source AI models against commercial tools (e.g., GPT-4) for analyzing thyroid nodule ultrasound reports.
- 2Researchers created 3,000 synthetic radiology reports for model training to avoid using patient data.
- 3Six open-source models were tested; Yi-34B matched GPT-4 accuracy, and smaller models sometimes outperformed GPT-3.5.
- 4Testing was performed on 50 real public patient reports using the ACR TI-RADS scoring system.
- 5Open-source models can run locally within hospital systems, avoiding privacy risks and high infrastructure costs.
Why It Matters
This research demonstrates that hospitals can safely and affordably deploy effective AI to aid radiology reporting, reducing privacy risks by eliminating the need to export sensitive data. The successful use of synthetic data and locally-run models points toward practical, scalable AI solutions for clinical workflows.

Source
EurekAlert
Related News

•EurekAlert
AI Time Series Model Boosts EEG-Based Seizure Prediction by 44%
UC Santa Cruz engineers' 'future-guided' deep learning improves seizure prediction accuracy using EEG data.

•EurekAlert
NTU Singapore to Launch Master's in AI in Medicine for Clinicians and Technologists
NTU Singapore will launch a new MSc in Artificial Intelligence in Medicine to train clinicians and technologists in clinical AI applications from 2026.

•EurekAlert
Study Finds Doctors, Nurses Outperform AI for Emergency Triage
Clinical staff outperform ChatGPT AI at emergency department triage, but AI shows promise as a support tool for urgent cases.