Open-source AI tools can perform as well as costly commercial systems in reading and structuring radiology reports without compromising patient privacy.
Key Details
- 1University of Colorado study evaluated free, open-source AI models against commercial tools (e.g., GPT-4) for analyzing thyroid nodule ultrasound reports.
- 2Researchers created 3,000 synthetic radiology reports for model training to avoid using patient data.
- 3Six open-source models were tested; Yi-34B matched GPT-4 accuracy, and smaller models sometimes outperformed GPT-3.5.
- 4Testing was performed on 50 real public patient reports using the ACR TI-RADS scoring system.
- 5Open-source models can run locally within hospital systems, avoiding privacy risks and high infrastructure costs.
Why It Matters

Source
EurekAlert
Related News

Chinese Researchers Unveil Photonic Chip for Ultra-Fast Image Processing
A new photonic chip achieves image processing at 25 million frames per second with high energy efficiency, promising major advances in real-time imaging and AI applications.

AI Model Predicts Growth Spurts from Pediatric Neck X-rays for Orthodontics
Korean researchers developed an AI system (ARNet-v2) that predicts children's growth spurts from neck X-rays to enhance orthodontic treatment planning.

Dana-Farber Showcases AI and Clinical Trial Advances at ESMO 2025
Dana-Farber researchers present major cancer clinical trial results, including AI-driven data analysis, at ESMO Congress 2025.