Open-source AI tools can perform as well as costly commercial systems in reading and structuring radiology reports without compromising patient privacy.
Key Details
- 1University of Colorado study evaluated free, open-source AI models against commercial tools (e.g., GPT-4) for analyzing thyroid nodule ultrasound reports.
- 2Researchers created 3,000 synthetic radiology reports for model training to avoid using patient data.
- 3Six open-source models were tested; Yi-34B matched GPT-4 accuracy, and smaller models sometimes outperformed GPT-3.5.
- 4Testing was performed on 50 real public patient reports using the ACR TI-RADS scoring system.
- 5Open-source models can run locally within hospital systems, avoiding privacy risks and high infrastructure costs.
Why It Matters

Source
EurekAlert
Related News

MD Anderson Unveils New AI Genomics Insights and Therapeutic Advances
MD Anderson reports breakthroughs in cancer therapeutics and provides critical insights into AI models for genomic analysis.

UCLA Researchers Present AI, Blood Biomarker Advances at SABCS 2025
UCLA Health researchers unveil major advances in breast cancer AI pathology, liquid biopsy, and biomarker strategies at the 2025 SABCS.

SH17 Dataset Boosts AI Detection of PPE for Worker Safety
University of Windsor researchers released SH17, a 8,099-image open dataset for AI-driven detection of personal protective equipment (PPE) in manufacturing settings.