Researchers unveiled a new taxonomy and online tool for classifying 1,000+ FDA-cleared AI/ML-enabled medical devices, with radiology as the dominant specialty.
Key Details
- 1A database and online tool summarize 1,016 FDA-cleared AI/ML devices through December 20, 2024.
- 2736 unique devices were identified after consolidating multiple authorizations per device.
- 3Most devices (88.2%) are built for radiology; neurology (2.9%) and hematology (1.9%) follow.
- 4Clinical function analysis: 84.1% assist in assessment, not intervention; 85.6% of AI functions are analysis, mostly for quantification/feature localization (65%), and triage (12.9%).
- 5Only three devices use EHR/tabular data, showing clear dominance of imaging data inputs.
- 6Key application types, definitions, and usage patterns are detailed in the report and a public website.
Why It Matters

Source
AuntMinnie
Related News

Stanford Team Introduces Real-Time AI Safety Monitoring for Radiology
Stanford researchers introduced an ensemble monitoring model to provide real-time confidence assessments for FDA-cleared radiology AI tools.

Experts Call for Stricter FDA Standards in Radiology AI Validation
Dana-Farber experts recommend actionable steps to enhance the rigor and transparency of FDA validation standards for radiology AI software.

Head-to-Head Study Evaluates AI Accuracy in Fracture Detection on X-Ray
A prospective study compared three commercial AI tools for fracture detection on x-ray, showing moderate-to-high accuracy for simple cases but weaker performance in complex scenarios.