Researchers unveiled a new taxonomy and online tool for classifying 1,000+ FDA-cleared AI/ML-enabled medical devices, with radiology as the dominant specialty.
Key Details
- 1A database and online tool summarize 1,016 FDA-cleared AI/ML devices through December 20, 2024.
- 2736 unique devices were identified after consolidating multiple authorizations per device.
- 3Most devices (88.2%) are built for radiology; neurology (2.9%) and hematology (1.9%) follow.
- 4Clinical function analysis: 84.1% assist in assessment, not intervention; 85.6% of AI functions are analysis, mostly for quantification/feature localization (65%), and triage (12.9%).
- 5Only three devices use EHR/tabular data, showing clear dominance of imaging data inputs.
- 6Key application types, definitions, and usage patterns are detailed in the report and a public website.
Why It Matters

Source
AuntMinnie
Related News

Patients Favor AI in Imaging Diagnostics, Hesitate on Triage Use
Survey finds most patients support AI in diagnostic imaging but are reluctant about its use in triage decisions.

FDA Eases Path for AI in Clinical Decision Support and Healthcare Innovation
FDA publishes new guidance to promote innovation in general wellness and clinical decision support, impacting medical AI including radiology.

Deep Learning AI Outperforms Radiologists in Detecting ENE on CT
A deep learning tool, DeepENE, exceeded radiologist performance in identifying lymph node extranodal extension in head and neck cancers using preoperative CT scans.