A multi-center study shows LLMs, with optimized prompts, provide consistent and scalable annotation of radiology reports across six major U.S. institutions.
Key Details
- 1Researchers deployed a prompt-engineered LLM at six U.S. healthcare sites for radiology report annotation.
- 2The LLM used a human-optimized prompt to extract diagnostic findings from reports.
- 3An open-source Python script enabled local execution of the same model, ensuring privacy and consistency.
- 4Results showed high consistency of annotations across different sites and pathologies.
- 5The study lays out a collaborative, standardized framework for LLM integration in radiology workflows.
Why It Matters
Consistent, automated annotation of radiology reports can accelerate data curation and support scalable AI applications in clinical practice. This study demonstrates a practical, privacy-conscious method for multi-center adoption of LLMs in radiology.

Source
AuntMinnie
Related News

•AuntMinnie
AI Enhancement Dramatically Improves Quality of Suboptimal Chest CTs
AI-powered image enhancement significantly boosts the diagnostic quality of suboptimal chest CT and CTPA studies.

•AuntMinnie
AI Enables Safe 75% Gadolinium Reduction in Breast MRI Without Losing Sensitivity
AI-enhanced breast MRI with a 75% reduced gadolinium dose maintained diagnostic sensitivity comparable to full-dose protocols.

•Cardiovascular Business
Deep Learning AI Model Detects Coronary Microvascular Dysfunction Via ECG
A new AI algorithm rapidly detects coronary microvascular dysfunction using ECGs, with validation incorporating PET imaging.