MIT researchers have developed MultiverSeg, an interactive AI tool enabling efficient, user-driven segmentation of biomedical image datasets without prior model training.
Key Details
- 1MultiverSeg allows users to annotate images through clicks and scribbles, reducing manual input over time.
- 2The system does not require presegmented data or machine learning expertise for new tasks.
- 3By the ninth image, only two user interactions are needed for accurate segmentation, outperforming existing tools.
- 4Applicable across imaging types such as X-ray and adaptable to a range of biomedical image datasets.
- 5Supported by Quanta Computer and the NIH, and benchmarked against state-of-the-art segmentation tools.
Why It Matters

Source
EurekAlert
Related News

AI Model Predicts Growth Spurts from Pediatric Neck X-rays for Orthodontics
Korean researchers developed an AI system (ARNet-v2) that predicts children's growth spurts from neck X-rays to enhance orthodontic treatment planning.

Dana-Farber Showcases AI and Clinical Trial Advances at ESMO 2025
Dana-Farber researchers present major cancer clinical trial results, including AI-driven data analysis, at ESMO Congress 2025.

Einstein College Awarded $18M NIH Grant to Develop AI Tools for Mental Health Crisis Prediction
Albert Einstein College of Medicine received an $18 million NIH grant to create AI-based tools for predicting mental health crises using cognitive monitoring.