Mayo Clinic researchers created an AI model to analyze patient photos for surgical site infection detection with strong accuracy.
Key Details
- 1AI system developed by Mayo Clinic automates detection of surgical site infections using patient-submitted wound images.
- 2Model was trained on 20,000+ images from more than 6,000 patients across nine hospitals.
- 3Two-stage Vision Transformer model: incision detection (94% accuracy) and infection detection (81% AUC).
- 4Demonstrated performance consistency across diverse patient demographics, addressing bias concerns.
- 5Potential to accelerate infection detection, reducing delays in follow-up care and costs.
- 6Further prospective studies are planned for clinical validation.
Why It Matters

Source
EurekAlert
Related News

AI Model Predicts Growth Spurts from Pediatric Neck X-rays for Orthodontics
Korean researchers developed an AI system (ARNet-v2) that predicts children's growth spurts from neck X-rays to enhance orthodontic treatment planning.

Dana-Farber Showcases AI and Clinical Trial Advances at ESMO 2025
Dana-Farber researchers present major cancer clinical trial results, including AI-driven data analysis, at ESMO Congress 2025.

Einstein College Awarded $18M NIH Grant to Develop AI Tools for Mental Health Crisis Prediction
Albert Einstein College of Medicine received an $18 million NIH grant to create AI-based tools for predicting mental health crises using cognitive monitoring.