A study finds mammography acquisition settings influence both AI and radiologist performance in breast cancer detection.
Key Details
- 1Seven acquisition parameters studied: machine type, kVp, x-ray exposure, relative exposure, paddle size, compression force, tissue thickness.
- 2Dataset: 28,278 2D mammograms from 22,626 women; 324 with cancer diagnosis within a year.
- 3Radiologists: Sensitivity 79.3%, specificity 88.7%; AI: Sensitivity 76.9%, specificity 76.9%.
- 4Increased x-ray exposure reduced specificity for AI but not radiologists; increased compression reduced specificity for radiologists but not AI.
- 5Trends for kVp: little effect on sensitivity, slight increase in specificity for both AI and radiologists.
Why It Matters
Understanding how technical factors affect AI versus human interpretation is vital for optimizing AI deployment in mammography. These insights could inform guidelines, quality control, and trust calibration when integrating AI into clinical screening workflows.

Source
AuntMinnie
Related News

•AuntMinnie
AI Enhancement Dramatically Improves Quality of Suboptimal Chest CTs
AI-powered image enhancement significantly boosts the diagnostic quality of suboptimal chest CT and CTPA studies.

•AuntMinnie
AI Enables Safe 75% Gadolinium Reduction in Breast MRI Without Losing Sensitivity
AI-enhanced breast MRI with a 75% reduced gadolinium dose maintained diagnostic sensitivity comparable to full-dose protocols.

•Cardiovascular Business
Deep Learning AI Model Detects Coronary Microvascular Dysfunction Via ECG
A new AI algorithm rapidly detects coronary microvascular dysfunction using ECGs, with validation incorporating PET imaging.