A study finds mammography acquisition settings influence both AI and radiologist performance in breast cancer detection.
Key Details
- 1Seven acquisition parameters studied: machine type, kVp, x-ray exposure, relative exposure, paddle size, compression force, tissue thickness.
- 2Dataset: 28,278 2D mammograms from 22,626 women; 324 with cancer diagnosis within a year.
- 3Radiologists: Sensitivity 79.3%, specificity 88.7%; AI: Sensitivity 76.9%, specificity 76.9%.
- 4Increased x-ray exposure reduced specificity for AI but not radiologists; increased compression reduced specificity for radiologists but not AI.
- 5Trends for kVp: little effect on sensitivity, slight increase in specificity for both AI and radiologists.
Why It Matters
Understanding how technical factors affect AI versus human interpretation is vital for optimizing AI deployment in mammography. These insights could inform guidelines, quality control, and trust calibration when integrating AI into clinical screening workflows.

Source
AuntMinnie
Related News

•Radiology Business
Rayus Radiology Launches $40 AI Mammography Screenings in Washington
Rayus Radiology is introducing a $40 AI-enhanced mammography add-on service at clinics in Washington state.

•AuntMinnie
AI Tool Mirai Shows Robust Performance for Interval Breast Cancer Detection
The Mirai AI model significantly improves detection of interval breast cancers in negative screening mammograms.

•Radiology Business
AI Tool Predicts Interval Breast Cancer Risk from Negative Mammograms
AI can predict interval breast cancer risk up to three years after a negative mammogram.