A UCL-led study identifies significant challenges in deploying AI tools for chest diagnostics across NHS hospitals in England.
Key Details
- 1The study analysed procurement and deployment of AI chest diagnostic tools (X-ray/CT) in 66 NHS hospital trusts.
- 2Delays were significant: by June 2025, one-third of trusts (23/66) had not yet implemented the tools clinically, 18 months after planned completion.
- 3Key hurdles included complex governance, lengthy contracts (4–10 months longer than expected), staff workload, outdated IT systems, and clinician skepticism toward AI.
- 4Enablers included strong national leadership, local network collaboration, and dedicated project management.
- 5The study recommends more targeted staff training and ongoing project management support for future AI rollouts.
Why It Matters

Source
EurekAlert
Related News

Deep Learning AI Outperforms Clinic Prognostics for Colorectal Cancer Recurrence
A new deep learning model using histopathology images identifies recurrence risk in stage II colorectal cancer more effectively than standard clinical predictors.

AI Reveals Key Health System Levers for Cancer Outcomes Globally
AI-based analysis identifies the most impactful policy and resource factors for improving cancer survival across 185 countries.

Dual-Branch Graph Attention Network Predicts ECT Success in Teen Depression
Researchers developed a dual-branch graph attention network that uses structural and functional MRI data to accurately predict individual responses to electroconvulsive therapy in adolescents with major depressive disorder.