
Researchers developed SAMP-Score, a machine learning tool that uses cell image morphology to screen for compounds inducing senescence in p16-positive cancer cells.
Key Details
- 1SAMP-Score leverages high-content microscopy images and morphological profiles (SAMPs) to classify cell senescence.
- 2The system screened over 10,000 compounds in p16-positive basal-like breast cancer (BLBC) cells.
- 3It identified QM5928 as a compound that consistently induced cancer cell senescence without killing normal cells.
- 4QM5928 was effective even in cancers resistant to drugs like palbociclib, which are often problematic in high p16-expressing cancers.
- 5The study demonstrates SAMP-Score's ability to detect nuanced morphological changes via AI analysis.
- 6SAMP-Score is openly available to the research community on GitHub.
Why It Matters

Source
EurekAlert
Related News

AI Model Accurately Predicts Blood Loss Risk in Liposuction
A machine learning model predicts blood loss during high-volume liposuction with 94% accuracy.

AI-Driven CT Tool Predicts Cancer Spread in Oropharyngeal Tumors
Researchers have created an AI tool that uses CT imaging to predict the spread risk of oropharyngeal cancer, offering improved treatment stratification.

AI Model PRTS Predicts Spatial Transcriptomics From H&E Histology Images
Researchers developed PRTS, a deep learning model that infers single-cell spatial transcriptomics from standard H&E-stained tissue images.