
A study shows large language models can predict immunotherapy responses in liver cancer as accurately as experienced doctors.
Key Details
- 1Research led by Prof. Hai Li at Hefei Institutes systematically assessed LLMs' ability to predict liver cancer treatment response.
- 2LLMs tested: GPT-4, GPT-4o, Google Gemini, DeepSeek, and a hybrid Gemini-GPT model.
- 3Dataset included clinical and imaging data from 186 unresectable HCC patients.
- 4Gemini-GPT matched senior (15+ years) doctor accuracy and surpassed less-experienced clinicians in both speed and accuracy.
- 5Hybrid and logical strategies improved LLM performance and consistency, especially in identifying likely responders to therapy.
- 6Published in the Journal of Medical Systems on May 15, 2025.
Why It Matters
This work demonstrates the emerging capability of LLMs to support and enhance personalized cancer treatment decisions, showing they can complement or even match the expertise of experienced radiologists and oncologists in outcome prediction.

Source
EurekAlert
Related News

•EurekAlert
AI Model Accurately Predicts Blood Loss Risk in Liposuction
A machine learning model predicts blood loss during high-volume liposuction with 94% accuracy.

•EurekAlert
AI-Driven CT Tool Predicts Cancer Spread in Oropharyngeal Tumors
Researchers have created an AI tool that uses CT imaging to predict the spread risk of oropharyngeal cancer, offering improved treatment stratification.

•EurekAlert
AI Model PRTS Predicts Spatial Transcriptomics From H&E Histology Images
Researchers developed PRTS, a deep learning model that infers single-cell spatial transcriptomics from standard H&E-stained tissue images.