A new AI model, LLaVA-Endo, dramatically improves diagnostic accuracy during gastrointestinal endoscopies by merging visual and language analysis.
Key Details
- 1LLaVA-Endo is developed by an international team including universities in China and the UAE.
- 2The model combines image recognition and natural language processing for GI endoscopy.
- 3It outperformed major AI systems, such as GPT-4V, Gemini, and MiniGPT-v2, on diagnostic tasks.
- 4LLaVA-Endo was validated through expert review and benchmark tests using thousands of annotated GI images.
- 5The study appears in Frontiers of Computer Science, with publication scheduled for April 2025.
Why It Matters

Source
EurekAlert
Related News

Deep Learning AI Outperforms Clinic Prognostics for Colorectal Cancer Recurrence
A new deep learning model using histopathology images identifies recurrence risk in stage II colorectal cancer more effectively than standard clinical predictors.

AI Reveals Key Health System Levers for Cancer Outcomes Globally
AI-based analysis identifies the most impactful policy and resource factors for improving cancer survival across 185 countries.

Dual-Branch Graph Attention Network Predicts ECT Success in Teen Depression
Researchers developed a dual-branch graph attention network that uses structural and functional MRI data to accurately predict individual responses to electroconvulsive therapy in adolescents with major depressive disorder.