Back to all news
Literature Review Highlights Gaps in Economic Evaluation of Healthcare AI
Tags:Research

A Finnish review finds significant gaps in economic evaluation reporting of AI technologies in Western healthcare.
Key Details
- 1A literature review examined economic evaluations of AI in healthcare, revealing insufficient research and inconsistent reporting.
- 2Over half of the reviewed studies (55.6%, n=10) only broadly described methods as 'ML' or 'deep learning,' lacking system-specific details.
- 3Most studies did not account for all costs, such as integration, support, or maintenance of AI systems.
- 4There is a need for unified guidelines for economic evaluation and reporting of AI in healthcare.
- 5The article emphasizes ongoing interdependencies and evolving performance of AI systems in real-world clinical settings.
Why It Matters
Clear and comprehensive economic evaluations are essential for decision-makers considering the adoption of AI in radiology and wider healthcare. The lack of robust, standardized evaluation methods may impede informed investments and implementation of AI technologies.

Source
AI in Healthcare
Related News

•AuntMinnie
Machine Learning Model Enhances Risk Stratification for Prostate MRI
Researchers developed machine learning models that outperform PSA testing in predicting abnormal prostate MRI findings for suspected prostate cancer.

•AuntMinnie
AI's Evolving Role in Tackling Radiology Workforce Shortages
AI technologies are emerging as key tools to alleviate radiology workforce shortages by improving efficiency and supporting clinical workflows.

•Radiology Business
Multimodal LLMs Struggle with Radiology Board Image Questions
Latest multimodal large language models show limitations on image-based radiology exam questions.