Literature Review Highlights Gaps in Economic Evaluation of Healthcare AI

A Finnish review finds significant gaps in economic evaluation reporting of AI technologies in Western healthcare.
Key Details
- 1A literature review examined economic evaluations of AI in healthcare, revealing insufficient research and inconsistent reporting.
- 2Over half of the reviewed studies (55.6%, n=10) only broadly described methods as 'ML' or 'deep learning,' lacking system-specific details.
- 3Most studies did not account for all costs, such as integration, support, or maintenance of AI systems.
- 4There is a need for unified guidelines for economic evaluation and reporting of AI in healthcare.
- 5The article emphasizes ongoing interdependencies and evolving performance of AI systems in real-world clinical settings.
Why It Matters

Source
AI in Healthcare
Related News

Deep Learning AI Outperforms Radiologists in Detecting ENE on CT
A deep learning tool, DeepENE, exceeded radiologist performance in identifying lymph node extranodal extension in head and neck cancers using preoperative CT scans.

Patients Favor AI in Imaging Diagnostics, Hesitate on Triage Use
Survey finds most patients support AI in diagnostic imaging but are reluctant about its use in triage decisions.

AI Projected to Reshape Radiologist Workload But Not Eliminate Jobs
Stanford researchers predict AI could reduce radiologist hours by up to 49% over the next five years, though workforce size is likely to remain stable due to rising imaging demand.