Researchers are exploring the use of radiologists' eye gaze data to enhance AI models for medical imaging.
Key Details
- 1Jeremy Wolfe, MD, of Harvard Medical School, highlights integrating eye gaze data from radiologists into AI algorithms.
- 2This approach shows early success in mammography and x-ray imaging AI models.
- 3The technique may help decrease perceptual errors and improve image labeling.
- 4Incorporating human visual attention patterns could make AI a better collaborative partner for radiologists.
- 5No imminent threat of AI replacing radiologists is foreseen, according to Wolfe.
Why It Matters

Source
AuntMinnie
Related News

AI Enables Safe 75% Gadolinium Reduction in Breast MRI Without Losing Sensitivity
AI-enhanced breast MRI with a 75% reduced gadolinium dose maintained diagnostic sensitivity comparable to full-dose protocols.

Deep Learning AI Model Detects Coronary Microvascular Dysfunction Via ECG
A new AI algorithm rapidly detects coronary microvascular dysfunction using ECGs, with validation incorporating PET imaging.

Debate at RSNA 2025 Examines If AI Is Ready for Autonomous Chest X-ray Reads
Experts at RSNA 2025 debated whether AI is ready for fully autonomous interpretation of chest x-rays, concluding that while technical progress is evident, significant challenges remain.