Researchers are exploring the use of radiologists' eye gaze data to enhance AI models for medical imaging.
Key Details
- 1Jeremy Wolfe, MD, of Harvard Medical School, highlights integrating eye gaze data from radiologists into AI algorithms.
- 2This approach shows early success in mammography and x-ray imaging AI models.
- 3The technique may help decrease perceptual errors and improve image labeling.
- 4Incorporating human visual attention patterns could make AI a better collaborative partner for radiologists.
- 5No imminent threat of AI replacing radiologists is foreseen, according to Wolfe.
Why It Matters

Source
AuntMinnie
Related News

Patients Favor AI in Imaging Diagnostics, Hesitate on Triage Use
Survey finds most patients support AI in diagnostic imaging but are reluctant about its use in triage decisions.

Deep Learning AI Outperforms Radiologists in Detecting ENE on CT
A deep learning tool, DeepENE, exceeded radiologist performance in identifying lymph node extranodal extension in head and neck cancers using preoperative CT scans.

AI Projected to Reshape Radiologist Workload But Not Eliminate Jobs
Stanford researchers predict AI could reduce radiologist hours by up to 49% over the next five years, though workforce size is likely to remain stable due to rising imaging demand.