Researchers are exploring the use of radiologists' eye gaze data to enhance AI models for medical imaging.
Key Details
- 1Jeremy Wolfe, MD, of Harvard Medical School, highlights integrating eye gaze data from radiologists into AI algorithms.
- 2This approach shows early success in mammography and x-ray imaging AI models.
- 3The technique may help decrease perceptual errors and improve image labeling.
- 4Incorporating human visual attention patterns could make AI a better collaborative partner for radiologists.
- 5No imminent threat of AI replacing radiologists is foreseen, according to Wolfe.
Why It Matters

Source
AuntMinnie
Related News

Toronto Study: LLMs Must Cite Sources for Radiology Decision Support
University of Toronto researchers found that large language models (LLMs) such as DeepSeek V3 and GPT-4o offer promising support for radiology decision-making in pancreatic cancer when their recommendations cite guideline sources.

AI Model Using Mammograms Enhances Five-Year Breast Cancer Risk Assessment
A new image-only AI model more accurately predicts five-year breast cancer risk than breast density alone, according to multinational research presented at RSNA 2025.

AI Model Uses CT Scans to Reveal Biomarker for Chronic Stress
Researchers developed an AI model to measure chronic stress using adrenal gland volume on routine CT scans.