Brazilian and French researchers have developed an imaging-based AI tool to predict how multiple sclerosis patients will respond to natalizumab treatment.
Key Details
- 1Combines high-content cell imaging and machine learning to analyze patient blood samples before natalizumab therapy.
- 2Study used over 400 cell morphological features, with 130 key characteristics for prediction.
- 3Tool achieved 92% accuracy in discovery and 88% in validation cohorts for predicting drug response.
- 4Non-responders showed distinct actin remodeling and cell morphology (more elongated CD8+ T cells).
- 5Findings published in Nature Communications, suggesting potential for broader disease and drug applications.
Why It Matters

Source
EurekAlert
Related News

Deep Learning Model Predicts Language Outcomes After Cochlear Implants Using MRI
AI model using deep transfer learning accurately predicts spoken language outcomes in deaf children after cochlear implantation based on pre-implantation brain MRI scans.

ML and Multimodal Imaging Power Cerebral Blood Flow Monitoring for Spaceflight
Researchers developed a machine learning model that uses ultrasound and MRI data to predict cerebral blood flow in simulated microgravity for astronaut health.

LSTM Deep Learning Enhances Optical Sensing for Biochemical and Medical Applications
Researchers have developed an LSTM-driven interferometric sensing system that achieves both high sensitivity and wide measurement range, overcoming previous trade-offs in optical sensing.