Brazilian and French researchers have developed an imaging-based AI tool to predict how multiple sclerosis patients will respond to natalizumab treatment.
Key Details
- 1Combines high-content cell imaging and machine learning to analyze patient blood samples before natalizumab therapy.
- 2Study used over 400 cell morphological features, with 130 key characteristics for prediction.
- 3Tool achieved 92% accuracy in discovery and 88% in validation cohorts for predicting drug response.
- 4Non-responders showed distinct actin remodeling and cell morphology (more elongated CD8+ T cells).
- 5Findings published in Nature Communications, suggesting potential for broader disease and drug applications.
Why It Matters

Source
EurekAlert
Related News

Mass General Brigham Spins Off AIwithCare to Transform Clinical Trial Screening
Mass General Brigham has spun out AIwithCare, a company commercializing RECTIFIER, an AI tool that automates and enhances clinical trial patient screening using EHR data.

AI-Driven CT Imaging Predicts Cardiac Events in Large UK Cohort
An AI tool analyzing CCTA images can predict future cardiovascular events and death in patients with suspected stable coronary artery disease.

AI Tool from UCLA Targets Undiagnosed Alzheimer's and Diagnostic Disparity
UCLA researchers developed an AI model using EHR data to better detect undiagnosed Alzheimer's disease, especially in underrepresented groups.