A prospective study compared three commercial AI tools for fracture detection on x-ray, showing moderate-to-high accuracy for simple cases but weaker performance in complex scenarios.
Key Details
- 1Three AI models (Rayvolve, BoneView, and RBFracture) assessed on x-rays from 1,037 adult patients across 22 anatomical regions.
- 2Fractures present in 29.6% of cases; 13.7% had acute fractures; 6.7% had multiple fractures.
- 3Overall AUCs: Rayvolve 84.9%, BoneView 84%, RBFracture 77.2%.
- 4Rayvolve showed highest sensitivity (79.5%), BoneView balanced performance, RBFracture highest specificity (93.6%).
- 5Performance dropped for multiple fractures (AUCs 64.2%-73.4%) and in dislocations.
- 6Researchers recommend these AI tools as adjuncts rather than replacements for clinicians.
Why It Matters

Source
AuntMinnie
Related News

New Report Highlights Clinical AI Performance, Sustainability, and Adoption Challenges
A multi-institutional review details key challenges, progress, and sustainability concerns in deploying clinical AI in real-world healthcare settings.

LLM Boosts Terminology Expansion in Radiology Reports Over RadLex
A large language model (LLM) significantly outperforms RadLex in expanding terms for radiology report language standardization.

Google Releases MedGemma 1.5 and MedASR AI Models for Medical Imaging
Google has launched MedGemma 1.5 and MedASR, two new open-access AI models tailored for healthcare and medical imaging use cases.