A prospective study compared three commercial AI tools for fracture detection on x-ray, showing moderate-to-high accuracy for simple cases but weaker performance in complex scenarios.
Key Details
- 1Three AI models (Rayvolve, BoneView, and RBFracture) assessed on x-rays from 1,037 adult patients across 22 anatomical regions.
- 2Fractures present in 29.6% of cases; 13.7% had acute fractures; 6.7% had multiple fractures.
- 3Overall AUCs: Rayvolve 84.9%, BoneView 84%, RBFracture 77.2%.
- 4Rayvolve showed highest sensitivity (79.5%), BoneView balanced performance, RBFracture highest specificity (93.6%).
- 5Performance dropped for multiple fractures (AUCs 64.2%-73.4%) and in dislocations.
- 6Researchers recommend these AI tools as adjuncts rather than replacements for clinicians.
Why It Matters

Source
AuntMinnie
Related News

AI's Expanding Role in Healthcare and Implications for Radiology
A series of thought leaders and institutions weigh in on AI's transformative potential in healthcare, with emphasis on radiology adoption and responsible use.

Workflow Efficiency Tops AI ROI in Radiology Practices
Survey finds that AI's main ROI for radiology practices is improved workflow efficiency rather than direct financial gains.

Most Radiology AI Users Lack Clear Evidence of Financial ROI
Survey finds over 75% of radiology organizations using AI lack clear, quantified ROI data.