A large radiology practice found a generative AI model beneficial for chest x-ray worklist prioritization and quality assurance.
Key Details
- 1The AI model generated text-based clinical reports for 34,680 chest x-ray studies over two weeks.
- 2An NLP model mapped reports to 155 chest x-ray findings, comparing AI and radiologist results.
- 3Sensitivity and specificity for pneumothorax detection were 62.4% and 99.3%, respectively.
- 4Studies with positive pneumothorax findings were flagged for urgent review; 36 cases with discrepant findings went to secondary review.
- 525% of secondary-reviewed cases revealed missed pneumothorax by radiologists.
- 644% of radiologists rated AI-generated reports as equivalent in quality to their own.
Why It Matters
This demonstrates tangible workflow improvements and diagnostic support from generative AI in radiology, suggesting the potential to reduce radiologist workload and aid in addressing staffing shortages.

Source
AuntMinnie
Related News

•AuntMinnie
AI Model Accurately Detects Pediatric Physeal Fractures on X-Ray
A deep learning model accurately identifies hard-to-detect physeal fractures in children's wrist x-rays.

•AuntMinnie
AI Advancements and Studies Highlighted in Digital X-Ray Insider
This edition covers AI models for fracture detection, mortality prediction, and more, along with new research using x-ray and DEXA modalities.

•AuntMinnie
Adult-Trained Radiology AI Models Struggle in Pediatric Imaging
Adult-trained radiology AI models often underperform when applied to pediatric imaging data, according to a systematic review.