A large radiology practice found a generative AI model beneficial for chest x-ray worklist prioritization and quality assurance.
Key Details
- 1The AI model generated text-based clinical reports for 34,680 chest x-ray studies over two weeks.
- 2An NLP model mapped reports to 155 chest x-ray findings, comparing AI and radiologist results.
- 3Sensitivity and specificity for pneumothorax detection were 62.4% and 99.3%, respectively.
- 4Studies with positive pneumothorax findings were flagged for urgent review; 36 cases with discrepant findings went to secondary review.
- 525% of secondary-reviewed cases revealed missed pneumothorax by radiologists.
- 644% of radiologists rated AI-generated reports as equivalent in quality to their own.
Why It Matters

Source
AuntMinnie
Related News

Toronto Study: LLMs Must Cite Sources for Radiology Decision Support
University of Toronto researchers found that large language models (LLMs) such as DeepSeek V3 and GPT-4o offer promising support for radiology decision-making in pancreatic cancer when their recommendations cite guideline sources.

AI Model Using Mammograms Enhances Five-Year Breast Cancer Risk Assessment
A new image-only AI model more accurately predicts five-year breast cancer risk than breast density alone, according to multinational research presented at RSNA 2025.

AI Model Uses CT Scans to Reveal Biomarker for Chronic Stress
Researchers developed an AI model to measure chronic stress using adrenal gland volume on routine CT scans.