
Northwestern Medicine's in-house generative AI boosts radiologist productivity by up to 40% in real-world clinical use.
Key Details
- 1Northwestern Medicine developed and implemented a generative AI system specifically for radiology.
- 2The AI instantly drafts near-complete, personalized radiology X-ray reports for review and finalization by radiologists.
- 3Tested on 12,000 real-world X-ray interpretations, it improved documentation efficiency by 15.5%.
- 4No negative impact was found on clinical accuracy or report quality during deployment.
- 5The AI model is 'lightweight' and tailored to radiology, built using Northwestern's own data rather than adapting commercial LLMs like ChatGPT.
- 6Researchers believe the tool can be commercialized at low cost and holds two patents.
Why It Matters

Source
Radiology Business
Related News

Google's Gemini Outperforms Providers in Communicating IR Procedures
Large language models like Google's Gemini demonstrate higher accuracy and greater empathy than human providers when answering patient questions about interventional radiology.

Comparing False-Positive Findings: AI vs. Radiologists in DBT Screening
AI and radiologists differ in the types and patient characteristics of false-positive findings in digital breast tomosynthesis breast cancer screening.

AI Triage Cuts CT Report Turnaround for Pulmonary Embolism—Daytime Only
FDA-backed study finds AI triage tools reduce radiology CT report turnaround times for pulmonary embolism during peak hours.