
A study evaluates generative AI's performance in interpreting chest X-rays for tuberculosis screening in low-resource settings.
Key Details
- 1Researchers trained a generative AI model using two public TB chest radiograph datasets.
- 2The AI generated free-text reports and labeled images as showing presence/absence and laterality of TB-related abnormalities.
- 3Radiologists compared the model's reports to their own interpretations and judged report acceptability.
- 4Two additional radiologists established the reference standard for evaluation.
- 5Generative AI shows promise but still needs significant oversight before clinical deployment.
Why It Matters

Source
Health Imaging
Related News

AI Enables Safe 75% Gadolinium Reduction in Breast MRI Without Losing Sensitivity
AI-enhanced breast MRI with a 75% reduced gadolinium dose maintained diagnostic sensitivity comparable to full-dose protocols.

Deep Learning AI Model Detects Coronary Microvascular Dysfunction Via ECG
A new AI algorithm rapidly detects coronary microvascular dysfunction using ECGs, with validation incorporating PET imaging.

Debate at RSNA 2025 Examines If AI Is Ready for Autonomous Chest X-ray Reads
Experts at RSNA 2025 debated whether AI is ready for fully autonomous interpretation of chest x-rays, concluding that while technical progress is evident, significant challenges remain.