
A study evaluates generative AI's performance in interpreting chest X-rays for tuberculosis screening in low-resource settings.
Key Details
- 1Researchers trained a generative AI model using two public TB chest radiograph datasets.
- 2The AI generated free-text reports and labeled images as showing presence/absence and laterality of TB-related abnormalities.
- 3Radiologists compared the model's reports to their own interpretations and judged report acceptability.
- 4Two additional radiologists established the reference standard for evaluation.
- 5Generative AI shows promise but still needs significant oversight before clinical deployment.
Why It Matters
Automating TB screening with generative AI could address radiologist shortages, especially in high-prevalence, low-resource settings. However, the need for oversight highlights ongoing challenges around accuracy, reliability, and safe adoption in clinical workflows.

Source
Health Imaging
Related News

•AuntMinnie
Machine Learning Model Enhances Risk Stratification for Prostate MRI
Researchers developed machine learning models that outperform PSA testing in predicting abnormal prostate MRI findings for suspected prostate cancer.

•AuntMinnie
AI's Evolving Role in Tackling Radiology Workforce Shortages
AI technologies are emerging as key tools to alleviate radiology workforce shortages by improving efficiency and supporting clinical workflows.

•Radiology Business
Multimodal LLMs Struggle with Radiology Board Image Questions
Latest multimodal large language models show limitations on image-based radiology exam questions.