A novel explainable AI model accurately detects and localizes breast tumors on MRI, outperforming conventional models—especially in low-cancer-prevalence screening scenarios.
Key Details
- 1The explainable fully convolutional data description (FCDD) model was trained and tested on 9,738 breast MRI exams from 2005-2022, plus an external multicenter dataset.
- 2FCCD outperformed standard binary classification models, achieving AUCs up to 0.84 (balanced tasks) and 0.72 (imbalanced) vs. 0.81 and 0.69 for benchmarks (p<0.001).
- 3In internal and external validation, FCCD consistently showed higher detection performance, e.g., AUC of 0.86 vs. 0.79 (external set).
- 4The model achieved a specificity of 13% vs. 9% for the benchmark at 97% sensitivity in imbalanced (realistic) settings (p=0.02).
- 5It produces interpretable heatmaps to highlight probable tumor areas, addressing the 'black box' issue in AI models.
- 6Researchers note potential to streamline breast MRI screening, including use with abbreviated MRI protocols.
Why It Matters

Source
AuntMinnie
Related News

AI and Collaborative Strategies Advance Lung Cancer Screening Uptake
Collaborative initiatives and novel AI tools are helping to advance lung cancer screening, but participation barriers and disparities persist despite guideline expansions.

AI Advances Push Opportunistic Imaging Into Clinical Focus
AI-powered opportunistic screening is transforming routine radiological images into proactive tools for risk detection of major diseases.

AI Improves Chest CT Workflow and Reduces Radiation Without Compromising Quality
AI-driven automatic positioning in chest CT reduces radiation dose and improves workflow efficiency without affecting image quality.