
Researchers developed an explainable AI model to improve breast cancer detection in MRI with lower false positive rates.
Key Details
- 1AI model was trained on over 10,000 contrast-enhanced breast MRI exams from 2005 to 2022.
- 2The dataset included diverse cases and varying categories of breast density for robust training.
- 3Unlike prior models, this AI was evaluated on both low- and high-prevalence cancer cohorts, improving clinical relevance.
- 4The model features explainability to provide evidence-backed decisions, critical for clinical adoption.
- 5A key aim is to reduce false positive rates, a common issue in breast MRI diagnostics.
Why It Matters
False positives in breast MRI can lead to unnecessary anxiety and follow-up tests. Explainable, robust AI models like this can aid radiologists in accurate cancer detection and support clinical integration through transparency.

Source
Health Imaging
Related News

•Health Imaging
AI as Second Reader Surpasses Radiologists in Breast Cancer Screening
AI used as a second reader on mammograms improves cancer detection rates compared to radiologists alone.

•Health Imaging
AI-Powered Ultrasound Tool Predicts Delivery Timing for Pregnant Patients
Researchers have created an AI model using ultrasound to accurately forecast expectant mothers’ delivery timelines.

•AuntMinnie
ChatGPT-4 Turbo Powers Postdeployment Monitoring of ICH Detection AI
Researchers found ChatGPT-4 Turbo could efficiently monitor the performance of Aidoc's ICH detection AI across real-world radiology practices.