
Researchers developed an explainable AI model to improve breast cancer detection in MRI with lower false positive rates.
Key Details
- 1AI model was trained on over 10,000 contrast-enhanced breast MRI exams from 2005 to 2022.
- 2The dataset included diverse cases and varying categories of breast density for robust training.
- 3Unlike prior models, this AI was evaluated on both low- and high-prevalence cancer cohorts, improving clinical relevance.
- 4The model features explainability to provide evidence-backed decisions, critical for clinical adoption.
- 5A key aim is to reduce false positive rates, a common issue in breast MRI diagnostics.
Why It Matters

Source
Health Imaging
Related News

Women's Uncertainty About AI in Breast Imaging May Limit Acceptance
Many women remain unclear about the role of AI in breast imaging, creating hesitation toward its adoption.

Stanford Team Introduces Real-Time AI Safety Monitoring for Radiology
Stanford researchers introduced an ensemble monitoring model to provide real-time confidence assessments for FDA-cleared radiology AI tools.

Head-to-Head Study Evaluates AI Accuracy in Fracture Detection on X-Ray
A prospective study compared three commercial AI tools for fracture detection on x-ray, showing moderate-to-high accuracy for simple cases but weaker performance in complex scenarios.