
Topol and Rajpurkar propose three models for dividing diagnostic tasks between AI and radiologists to improve workflow outcomes.
Key Details
- 1Eric J. Topol, MD, and Pranav Rajpurkar, PhD, outlined their ideas in a commentary in RSNA's Radiology.
- 2They challenge the traditional 'assistive approach,' citing evidence that integrated workflows don't always enhance results.
- 3Three division-of-labor models are described: AI-first, physician-first, and case allocation based on complexity.
- 4Role separation is promoted to leverage the unique strengths of both AI and radiologists and reduce automation errors.
- 5The authors note that hybrid and adaptive approaches will likely emerge in clinical practice, based on context.
Why It Matters

Source
Radiology Business
Related News

Deep Learning AI Outperforms Radiologists in Detecting ENE on CT
A deep learning tool, DeepENE, exceeded radiologist performance in identifying lymph node extranodal extension in head and neck cancers using preoperative CT scans.

Patients Favor AI in Imaging Diagnostics, Hesitate on Triage Use
Survey finds most patients support AI in diagnostic imaging but are reluctant about its use in triage decisions.

AI Projected to Reshape Radiologist Workload But Not Eliminate Jobs
Stanford researchers predict AI could reduce radiologist hours by up to 49% over the next five years, though workforce size is likely to remain stable due to rising imaging demand.