
Topol and Rajpurkar propose three models for dividing diagnostic tasks between AI and radiologists to improve workflow outcomes.
Key Details
- 1Eric J. Topol, MD, and Pranav Rajpurkar, PhD, outlined their ideas in a commentary in RSNA's Radiology.
- 2They challenge the traditional 'assistive approach,' citing evidence that integrated workflows don't always enhance results.
- 3Three division-of-labor models are described: AI-first, physician-first, and case allocation based on complexity.
- 4Role separation is promoted to leverage the unique strengths of both AI and radiologists and reduce automation errors.
- 5The authors note that hybrid and adaptive approaches will likely emerge in clinical practice, based on context.
Why It Matters
These recommendations highlight the evolving strategies for effectively integrating AI into radiology practice. Clarifying roles can help maximize clinical benefits and reduce risks such as automation bias or neglect.

Source
Radiology Business
Related News

•Radiology Business
AI Tool Detects Elusive Epilepsy Lesions Missed by Radiologists
Researchers developed an AI tool that identifies focal cortical dysplasia on imaging, aiding diagnosis and surgical planning for epilepsy.

•Radiology Business
AI Triage Cuts CT Report Turnaround for Pulmonary Embolism—Daytime Only
FDA-backed study finds AI triage tools reduce radiology CT report turnaround times for pulmonary embolism during peak hours.

•Cardiovascular Business
AI Uses Mammograms to Predict Women’s Cardiovascular Disease Risk
AI algorithms can analyze mammograms to predict cardiovascular disease risk, expanding the utility of breast imaging.