Dana-Farber experts recommend actionable steps to enhance the rigor and transparency of FDA validation standards for radiology AI software.
Key Details
- 1The current FDA regulatory framework for SaMD validation is flexible but lacks explicit, consistent standards for radiology AI.
- 2Common radiology SaMD types include CADq, CADt, CADe, CADx, CADe/x, and CADa/o.
- 3Retrospective validation is typical for assistive radiology AI; prospective studies are standard for autonomous devices.
- 4Concerns exist over inadequate evaluation metrics for generative models and the use of synthetic data for some devices.
- 5Recommendations include removing nonclinical validation for certain devices, requiring more reader and prospective studies, adopting mandatory reporting checklists, and creating a public validation database.
Why It Matters
Clear and consistent FDA standards are crucial for ensuring the clinical reliability, performance, and reporting transparency of AI tools used in radiology, directly impacting adoption and trust among professionals and patients.

Source
AuntMinnie
Related News

•AI in Healthcare
FDA Seeks Real-World Performance Insights on AI Medical Devices
FDA calls for healthcare worker feedback to enhance monitoring of AI-enabled medical devices in real-world settings.

•Radiology Business
Analysis Finds Lax Reporting on Key Safety Data in FDA-Cleared AI Devices
Less than 30% of FDA-cleared AI devices shared key safety and adverse event data before approval, raising regulatory concerns.

•Health Imaging
Most FDA-Cleared AI Devices Lack Pre-Approval Safety Data, Study Finds
A new study finds fewer than 30% of FDA-cleared AI medical devices reported key safety or adverse event data before approval.